CORE LOG SHEET Ausgrid Client: **HOLE No. GHD-BH4** Scotland Island Energy Reliability Project Project: SHEET 7 OF 8 Pittwater, Church Point, NSW Location: 341145.3 E 6275801.8 N MGA94/56 AHD Angle from Horiz.: 90° Surface RL: -1.97m Processed: RCO Position: Rig Type: Contractor: Stratacore Driller: TR HydraP Trekker Mounting: Track Checked: JK **HWT** Bit: Surface set Bit Condition: New Casing Dia.: **Barrel (m):** 1.5m Date: 31/08/2018 Date Started: 30/7/2018 Date Logged: 01/8/2018 Note: * indicates signatures on origina issue of log or last revision of log Date Completed: 2/8/2018 Logged by: CT **DRILLING MATERIAL NATURAL FRACTURES** GP. Description **Estimated Additional Data Progress** Spacing 8 Depth / (RL) metres 2127425 SCOTLAND ISLAND ERP ROCK TYPE, colour, grain size, structure Strength (Core Loss / Run (mm) (joints, partings, seams, zones and (texture, mineral composition, hardness Is₍₅₀₎ MPa Drilling & Casir Drill Depth (m) veins) SCALE (m) alteration, cementation, etc. as applicable) Graphic Log Fracture type, orientation, infilling or Weathering coating, shape, roughness, other. RQD (%) SOIL TYPE, moisture, colour, 0.03 consistency, structure, minor components (origin) 100 300 1000 테킨剌剌니님늢 SANDSTONE, as previous. 25.15m, BP, 17°, CN, PLN, RF, CI 25.23m, BP, 10°, CLAY, UN, RF, Cl 25.27m, BP, 15°, CLAY, PLN, RF, Cl (20)(46)25.72m, SM, 0°, LP CLAY, 10mm GEO 25.79m, SM, 12°, LP CLAY, 3mm 25.92, SM, 0°, SANDY CLAY, 15mm 25.93-26.00m, DB's 26.00 26 CORE LOSS 300mm. 26.30 26.30 CORE LOSS 110mm. 26 41 SANDSTONE, as previous. From 26.41m, bedding at 5-10°. 26.59m, BP, 10°, CN, UN, RF, Cl 26.64m, BP, 5°, CN, UN, RF, Cl 26.89m, SM, 5°, 4mm, EW rock 26.93m, SM, 0°, SANDY CLAY, 8mm 26.99m, SM, 0°, 10mm, EW rock 27 (7) (74) Coring+HWT casing 27.16m, SM, 0°, SANDY CLAY, 15mm 27.27m, SM, 0°, SANDY CLAY, 25mm 27.52m, SM, 0°, LP CLAY, 10mm 27.53-27.56m, iron healed partings. MW 27.71m, BP, 5°, CN, PLN, RF, CI 27.80 27.78m, SM, 0°, LP CLAY, 5mm 27.90m, 5mm diameter void, possible removed clast. 28.02m, BP, 6°, CLAY, UN, RF, CI 28.05m, BP, 8°, CN, UN, RF, CI 28.16m, SM, 5°, LP CLAY, 4mm From 28.30m, becoming coarse grained. 28.39m, BP, 14° CN, PLN, RF, CI 28.42m, BP, 14° CN, PLN, RF, CI (30)(60)28.65m, BP, 10°, CN, UN, RF, CI 28.81m, JT, 75°, FE, UN, RF, CI 28.85 CORE LOSS 450mm. 20 100) 29.30 29.30 CLAYSTONE, grey/red, indistinctly bedded at 0°, local zones of soil strength material (high plasticity clay). (0)(100)29.61m, JT, 25°, CLAY VE, PLN, SO, CI HW 29.80 29.97m, JT, 45°, CLAY VE, UN, SO, CI

See standard sheets for details of abbreviations & basis of descriptions

CORE LOG SHEET Client: Ausgrid **HOLE No. GHD-BH4** Scotland Island Energy Reliability Project Project: SHEET 8 OF 8 Pittwater, Church Point, NSW Location: 341145.3 E 6275801.8 N MGA94/56 AHD Angle from Horiz.: 90° Position: Surface RL: -1.97m Processed: RCO HydraP TrekkerMounting: Track Contractor: Stratacore Driller: TR Rig Type: Checked: JK Bit Condition: New **HWT** Bit: Surface set Casing Dia.: **Barrel (m):** 1.5m Date: 31/08/2018 Date Started: 30/7/2018 Logged by: CT Date Logged: 01/8/2018 Note: * indicates signatures on origina issue of log or last revision of log Date Completed: 2/8/2018 GHD **DRILLING MATERIAL NATURAL FRACTURES** 2127425 SCOTLAND ISLAND ERP. GPJ Description **Estimated Additional Data Progress** Spacing 8 Depth / (RL) metres ROCK TYPE, colour, grain size, structure Strength (mm) (Core Loss / Run (joints, partings, seams, zones and (texture, mineral composition, hardness, Is₍₅₀₎ MPa Drilling & Casir Drill Depth (m) veins) SCALE (m) alteration, cementation, etc. as applicable) Graphic Log Fracture type, orientation, infilling or Weathering coating, shape, roughness, other. RQD (%) SOIL TYPE, moisture, colour, Water consistency, structure, minor components (origin) 20 100 300 1000 테킥剌뢰 0.02m, SM, 20°, HP CLAY, 30mr CLAYSTONE, as previous. 30.10m, JT, 60°, FE, PLN, RF, CI 30.18m, JT, 45°, CN, UN, SO, CI HW (30)(40)30.30-30.37m, FZ, possible DB 30.44m, SM, 0°, HP CLAY, 120mm 30.46m, JT, 30°, CLAY VE, UN, SO, CI 30.50 CORE LOSS 300mm. 30.55m, JT, 55°, CLAY VE, PLN, SO, CI 30.63m, SM, 10°, LP CLAY, 15mm casing 30.70m, JT, 45°, CLAY, PLN, SO, CI GEO 30.80 30.80 30.79m, JT, 25°, CLAY VE, UN, SO, CI CLAYSTONE, as previous. HQ Coring+HWT From 31.50m, becoming red. (0) (85) 32.16m, JT, 20°, CN, UN, SO, Cl 32.25m, SM, 25°, LP CLAY, 7mm 32.31 HW (0) (0)32.73 32.90m, JT, 85°, CN, UN, SO, DIS, CI .15m, SM, 15°, LP CLAY, 15mm .19m, SM, 5°, LP CLAY, 10mm 33.30m, JT, 40°, CLAY VE, PLN, SO, CI 33.40m, JT, 37°, CLAY VE, PLN, SO, CI (0) (88)33.95m, JT, 50°, CN, UN, SO, CI \$4.08 34.08 End of Borehole at 34.08 metres. **Target Depth GHD GEOTECHNICS** Job No.

See standard sheets for details of abbreviations & basis of descriptions

BOREHOLE LOG SHEET

& basis of descriptions

Client: Ausgrid **HOLE No. GHD-BH5** Scotland Island Energy Reliability Project Project: SHEET 1 OF 5 Location: Pittwater, Church Point, NSW TEMPLATE 341540.8 E 6275988.9 N MGA94/56 Surface RL: -1.29m AHD Angle from Horiz.: 90° Position: Processed: RCO HydraP TrekkerMounting: Track Contractor: Stratacore Driller: TR Rig Type: Checked: JK 10/7/2018 Date Started : Date Completed: 12/7/2018 Logged by: CT Date: 31/08/2018 GEO ote: * indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE 2127425 SCOTLAND ISLAND ERP. GPJ GHD Depth / (RL) metres Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** SOIL TYPE, colour, structure, minor components (origin), Consistency / Density Index Hole Support \ Casing **JSC Symbol** Graphic Log and SCALE (m) ROCK TYPE, colour, grain size, structure, Water weathering, strength SAND, pale yellow, marine sediments, shells (alluvium). Note: 'TR' = W undisturbed sample for Thermal Resistivity testing *Denotes SPT SPT 0/0/0 N=0 terminated early due to difficulties GEO extracting sampler on floating barge. Inferred N value. 0.0m, no sample return SPT falling under rod weight 1.50 Sandy CLAY, grey/brown, low plasticity, fine to coarse grained sand (alluvium). CL w>PL F-St 1.60-2.05m, JAR+BAG PID=1.0ppm SPT 2/3/5 N=8 2 2.10-2.40m, TR SAMPLE **U75** HWT casing RW (m)-2.80-3.25m, JAR+BAG PID=1.1ppm 3 St 4/6/9 From 4.50m, iron staining and iron cementation. 4.50-4.95m, VSt JAR+BAG PID=1.0ppm SPT 5/7/11 N=18 **GHD GEOTECHNICS** Job No. See standard sheets for Level 2 29 Christie Street, St Leonards NSW 2065 Australia T: 61 2 9462 4700 F: 61 2 9462 4710 E: slnmail@ghd.com GHD details of abbreviations 21-27425

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

BOREHOLE LOG SHEET

Client: Ausgrid **HOLE No. GHD-BH5** Scotland Island Energy Reliability Project Project: SHEET 2 OF 5 Location: Pittwater, Church Point, NSW TEMPLATE 341540.8 E 6275988.9 N MGA94/ 56 Surface RL: -1.29m AHD Angle from Horiz.: 90° Position: Processed: RCO HydraP TrekkerMounting: Track Contractor: Stratacore Driller: TR Rig Type: Checked: JK Date Started : 10/7/2018 Date Completed: 12/7/2018 Logged by: CT Date: 31/08/2018 ote: * indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE 2127425 SCOTLAND ISLAND ERP. GPJ GHD Depth / (RL) metres Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** SOIL TYPE, colour, structure, minor components (origin), Hole Support \ Casing Consistency / Density Index Graphic Log **USC Symbol** and SCALE (m) ROCK TYPE, colour, grain size, structure, Water weathering, strength CL Sandy CLAY, as previous. w>PL St 5.10-5.40m, TR SAMPLE U75 GEO 6.00 6 CI CLAY, grey, medium plasticity, trace of silt, iron staining, w~PL 6.00-6.45m, BAG iron induration (alluvium). SPT 11/21/20 N=41 HWT casing RW (m) 7.50-7.85m, BAG SPT 18/28/ 8 for 50mm N~523 8.00m, soil too stiff for U75 (TR Sample) U75 9 SPT 11/5 for 9.20 10mm Start of coring at 9.2 metres. For cored interval, see Core Log Sheet. N=ref Job No. **GHD GEOTECHNICS** See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions

CORE LOG SHEET

Ausgrid Client: **HOLE No. GHD-BH5** Project: Scotland Island Energy Reliability Project SHEET 3 OF 5 Pittwater, Church Point, NSW Location : TEMPLATE AHD Angle from Horiz.: 90° 341540.8 E 6275988.9 N MGA94/ 56 Surface RL: -1.29m Processed: RCO Position: Rig Type: Contractor: Stratacore Driller: TR HydraP Trekker Mounting: Track Checked: JK **HWT** Bit: Surface set Bit Condition: New Casing Dia.: **Barrel (m):** 1.5m Date: 31/08/2018 GEO Date Started: 10/7/2018 Date Logged: 11/7/2018 Note: * indicates signatures on origina issue of log or last revision of log Date Completed: 12/7/2018 Logged by: CT GHD **DRILLING MATERIAL NATURAL FRACTURES** 2127425 SCOTLAND ISLAND ERP. GPJ Description **Estimated Additional Data Progress** Spacing 8 Depth / (RL) metres ROCK TYPE, colour, grain size, structure Strength (mm) (Core Loss / Run (joints, partings, seams, zones and (texture, mineral composition, hardness, Is₍₅₀₎ MPa Drilling & Casir Drill Depth (m) veins) alteration, cementation, etc. as applicable) SCALE (m) Graphic Log Fracture type, orientation, infilling or Weathering coating, shape, roughness, other. RQD (%) SOIL TYPE, moisture, colour, 0.03 0.3 10 10 Water consistency, structure, minor components (origin) Visual 20 40 100 300 1000 COREHOLE VISUAL GEO 6 9 Start of coring at 9.2 metres. For Non Cored interval, see Borehole Log Sheet. 9.20 CORE LOSS 90mm. Coring+HWT casing 9.29 SILTSTONE, red brown, orange brown with 9.33m, SM, 65°, CLAY, 5mm, soft minor pale grey bands, distinctly laminated at 9.47M, SM, 0°, CLAY, 60mm, very stiff 9.52m, SM, 50°, CLAY, 3mm, soft 9.58m, BP, 0°, CLAY, PLN, RF, Cl 9.63m, JT, 66°, CLAY, UN, RF, Cl 9.68m, BP, 0°, CLAY VE, PLN, RF, Cl 9.73m, BP, 5°, CLAY, UN, RF, Cl 0-10°, iron staining, iron indurated zones. (18)(23)HW 욧 9.95m, SM, 0°, CLAY, 50mm, very stiff 10.00 **GHD GEOTECHNICS** Job No. See standard sheets for Level 2 29 Christie Street, St Leonards NSW 2065 Australia T: 61 2 9462 4700 F: 61 2 9462 4710 E: slnmail@ghd.com नाः details of abbreviations 21-27425 & basis of descriptions

CORE LOG SHEET Ausgrid Client: **HOLE No. GHD-BH5** Scotland Island Energy Reliability Project Project: SHEET 4 OF 5 Pittwater, Church Point, NSW Location: AHD Angle from Horiz.: 90° 341540.8 E 6275988.9 N MGA94/56 Surface RL: -1.29m Processed: RCO Position: Rig Type: Contractor: Stratacore Driller: TR HydraP Trekker Mounting: Track Checked: JK Bit Condition: New **HWT** Bit: Surface set Casing Dia.: **Barrel (m):** 1.5m Date: 31/08/2018 Date Logged: 11/7/2018 Note: * indicates signatures on origina issue of log or last revision of log Date Started: 10/7/2018 Date Completed: 12/7/2018 Logged by: CT GHD **DRILLING MATERIAL NATURAL FRACTURES** GPJ Description **Estimated Additional Data Progress** Spacing 8 Depth / (RL) metres 2127425 SCOTLAND ISLAND ERP ROCK TYPE, colour, grain size, structure Strength (Core Loss / Run (mm) (joints, partings, seams, zones and (texture, mineral composition, hardness Is₍₅₀₎ MPa Drilling & Casir Drill Depth (m) veins) SCALE (m) alteration, cementation, etc. as applicable) Graphic Log Fracture type, orientation, infilling or Weathering coating, shape, roughness, other. RQD (%) SOIL TYPE, moisture, colour, 0.03 Water consistency, structure, minor components (origin) 20 100 300 1000 CORE LOSS 140mm. 10.14 SILTSTONE, as above. 10.26m, SM, 65°, CLAY, 3mm, soft 10.33m, JT, 25°, CN, UN, SO, CI 10.41-10.49, FZ, possible DB From 10.60m, predominantly grey with minor (11)(47)red-brown and orange brown staining. HW GEO 10.73m, JT, 65°, FE, UN, RF, CI 10.74m, JT, 65°, FE, UN, RF, CI 10.77m, BP, 5°, CLAY, UN, SO, CI 10.81m, SM, 0°, CLAY, 20mm, soft 10.84-10.86m, JT's x4, 45°, FE, UN, SO, CI 11,21m, JT, 30°, CLAY VE, UN, SO, CI 11.30 11.30 CORE LOSS 180mm. 11.48 SILTSTONE, as above. 11.56m, JT, 65°, CN, UN, RF, CI From 11.48, interlaminated fine grained sandstone. 11.68m, BP, 0°, FE, UN, SO, Cl 11.69m, BP, 0°, FE, UN, SO, Cl 11.74m, BP, 0°, FE, UN, RF, Cl 11.82m, BP, 0°, CN, PLN, SO, Cl (15)(54)Coring+HWT casing 12.17m, JT, 40°, FE, PLN, RF, CI 12.38m, JT, 40°, FE, UN, RF, CI 12.50 12.58m, SM, 0°, CLAY, 40mm, soft 12.66m, JT, 75°, FE, UN, RF, CI (0) (0) 12.75m, JT, 35°, CLAY VE, PLN, SO, CI g 12.90 From 13.00m, sporadic iron oxide healed joints, dipping approx. 50-70°. 13.19m, JT, 45°, CLAY, UN, RF, CI 13.22m, BP, 0°, CLAY VE, UN, SO, CI 13.25m, BP, 0°, CLAY VE, UN, SO, CI HW 13.35m, EW SM, 70°, CLAY, 13mm, soft (0) (81) 13.69m, JT, 40°, FE, PLN, RF, CI 13.87m, BP, 5°, CLAY VE, UN, SO, CI 14.02m, JT, 45°, FE, UN, RF, CI 14.14m, BP, 5°, FE, PLN, RF, C 4.30 14.63m, BP, 0°, CN, PLN, SO, CI 14.68m, JT, 30°, FE, PLN, RF, CI 4.84m, JT, 45°, FE, PLN, RF, CI 14.94m, JT, 50°, CLAY VE, UN, RF, C

See standard sheets for details of abbreviations & basis of descriptions

GHD

GHD GEOTECHNICS

Level 2 29 Christie Street, St Leonards NSW 2065 Australia T: 61 2 9462 4700 F: 61 2 9462 4710 E: slnmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS Job No.

21-27425

CORE LOG SHEET Client: Ausgrid **HOLE No. GHD-BH5** Scotland Island Energy Reliability Project Project: SHEET 5 OF 5 Pittwater, Church Point, NSW Location: TEMPLATE 341540.8 E 6275988.9 N MGA94/ 56 AHD Angle from Horiz.: 90° Position: Surface RL: -1.29m Processed: RCO HydraP TrekkerMounting: Track Contractor: Stratacore Driller: TR Rig Type: Checked: JK Bit Condition: New **HWT** Bit: Surface set Casing Dia.: **Barrel (m):** 1.5m Date: 31/08/2018 Date Started: 10/7/2018 Date Logged: 11/7/2018 Note: * indicates signatures on origina issue of log or last revision of log Date Completed: 12/7/2018 Logged by: CT GHD **DRILLING MATERIAL NATURAL FRACTURES** 2127425 SCOTLAND ISLAND ERP. GPJ **Progress** Description **Estimated Spacing Additional Data** % Depth / (RL) metres ROCK TYPE, colour, grain size, structure Strength (Core Loss / Run (mm) (joints, partings, seams, zones and Drilling & Casing (texture, mineral composition, hardness, Is₍₅₀₎ MPa Drill Depth (m) veins) SCALE (m) alteration, cementation, etc. as applicable) Graphic Log Fracture type, orientation, infilling or Weathering coating, shape, roughness, other. RQD (%) SOIL TYPE, moisture, colour, consistency, structure, minor components (origin) Water Visual 1 20 1 40 3 00 1 000 (0) (81) 4.96m, BP, 0°, CLAY VE, PLN, SO, CI SILTSTONE, as previous. 15.23m, BP, 0°, CLAY VE, UN, SO, CI HW 15.48m, BP, 0°, CN, PLN, SO, CI 15.57m, JT, 20°, FE, UN, RF, CI 15.67 15.67 End of Borehole at 15.67 metres. GEO **Target Depth**

See standard sheets for details of abbreviations & basis of descriptions

BOREHOLE LOG SHEET

Client: Ausgrid **HOLE No. GHD-BH6** Project: Scotland Island Energy Reliability Project SHEET 1 OF 1 Location: Harold Reserve, Scotland Island, NSW Position: 341616.5 E 6276042.4 N MGA94/56 Surface RL: 1.76m AHD Angle from Horiz.: 90° Processed: CT Rig Type: Hand auger Mounting: Hand auger Contractor: -Driller: CT/JV Checked: Date Started: 27/9/2018 Date Completed: 27/9/2018 Logged by: CT/JV Date: 2/10/2018 GEO_BOREHOLE 2127425 SCOTLAND ISLAND ERP.GPJ GHD_GEO_ ote: * indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** Depth / (RL) metres Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** SOIL TYPE, colour, structure, minor components (origin), Consistency / Density Index Hole Support \ Casing **JSC Symbol** Graphic Log and SCALE (m) ROCK TYPE, colour, grain size, structure, Water weathering, strength Silty SAND, dark brown, fine to coarse grain, some fine 0.00-0.10m, JAR, ■ Hand Auger w~PL gravels (fill). **BAG** $\overline{\mathsf{D}}$ Ē 0.40-0.50m, JAR, 0.50 BAG End of borehole at 0.5 metres. Refusal on Sandstone Refusal 2 3 Job No. **GHD GEOTECHNICS** See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions

BOREHOLE LOG SHEET

Client: Ausgrid **HOLE No. GHD-BH7** Project: Scotland Island Energy Reliability Project SHEET 1 OF 1 Location: Harold Reserve, Scotland Island, NSW TEMPLATE.GDT Position: 341622.4 E 6276049.8 N MGA94/56 Surface RL: 3.43m Angle from Horiz.: 90° Processed: CT AHD Rig Type: Hand auger Mounting: Hand auger Contractor: -Driller: CT/JV Checked: **Date Started: 27/9/2018** Date Completed: 27/9/2018 Logged by: CT/JV Date: 2/10/2018 GEO ote: * indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE 2127425 SCOTLAND ISLAND ERP. GPJ GHD Depth / (RL) metres Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** SOIL TYPE, colour, structure, minor components (origin), Consistency / Density Index Hole Support \ Casing **JSC Symbol** Graphic Log and SCALE (m) ROCK TYPE, colour, grain size, structure, weathering, strength CLAY, pale brown, medium plasticity, trace of fine to medium 0.00 - 0.10m, JAR, w<PL St BAG gravels (fill). 0.40-0.50m, JAR, VSt BAG GEO 0.80 Gravelly CLAY, pale brown, low plasticity, fine to coarse w<PL St Hand Auger gravels, gravels are quartz and sandstone, sub-rounded to 0.90-1.00m, JAR, $\overline{\mathsf{D}}$ Ħ angular (fill). **BAG** 1.20 CLAY, brown streaked red, high plasticity (fill). w<PL St 1.50-1.60m, JAR, **BAG** VSt 1.80 CLAY, pale grey streaked pale orange, high plascitity, trace of w~PL VSt 1.90-2.00m, JAR, fine to medium gravels (fill). BAG 2.00 2 End of borehole at 2 metres. Limit of investigation 3 **GHD GEOTECHNICS** Job No. See standard sheets for Level 2 29 Christie Street, St Leonards NSW 2065 Australia T: +61 2 9462 4700 F: +61 2 9462 4710 E: sInmail@ghd.com details of abbreviations

& basis of descriptions

Appendix C – Equipment Calibration Certificates

Instrument

PhoCheck Tiger

Serial No.

T-105859

Air-Met Scientific Pty Ltd 1300 137 067

ltem	Test	Pass			Comments	<u> </u>
Battery	Charge Condition	✓	·			
	Fuses	✓				
	Capacity	✓				
	Recharge OK?	✓				
Switch/keypad	Operation	~				
Display	Intensity	✓			· · · · · · · · · · · · · · · · · · ·	A - Charles and Annual
	Operation	✓				
	(segments)					
Grill Filter	Condition	✓				
	Seal	√		***************************************		
Pump	Operation	✓	and the same of th		·	
	Filter	✓				
	Flow	✓			·	
	Valves, Diaphragm	✓		***************************************	·	,
PCB	Condition	✓			***************************************	
Connectors	Condition	~				
Sensor	PID		10.6eV Lar	mp		
Alarms	Beeper	· · ·	Low	High	TWA	STEL
	Settings	✓	50ppm	100ppm	N/A	N/A
Software	Version	✓		1,		
Data logger	Operation	✓				· · · · · · · · · · · · · · · · · · ·
Download	Operation	✓			***************************************	
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and	Certified	Gas bottle	Instrument Reading
		concentration		No	
PID Lamp		98ppm Isobutylene	NATA	SY137	98ppm

Calibrated by:	Sarablia	Sarah Lian

Calibration date:

6/07/2018

Next calibration due:

5/01/2019

Appendix D – Analytical Results Tables

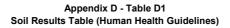

Table D1 - Soil Results Table - Human Health

Table D2 - Soil Results Table - Waste Classification

Table D3 – Groundwater Results Table

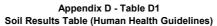
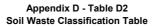

Table D4 - Soil Results QAQC RPD Table

Table D5 - Rinsate QAQC Results Table

Part								Field Parameters	Inore	ganics		Major I	lons	Asbestos				Me	etals				Ι			BTEXN				Ι		TRH	- NEPM 2
Part								There i are meters		Burnes				7.000000																			
Column C							Resistivity*	pH (Field)	Electrical conductivity (lab) Moisture Content (dried @ 103*	bH (agueous extract)	מלתפסתה בענושו	Chloride		Asbestos Reported Result	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury		Zinc	Benzene	Toluene	Ethylbenzene	Xylene (o)	ine (m &	Xylene Total	alene	(C6-C10 minus	C6-C10 Fraction	(>C10-C16 minus Na	>C10-C16 Fraction
Column C	501						_	· ·			_			Comment																	+		
Control Cont		ct Contact Intrucin	e Works				0.5	U.1	5 1	. 0.	1	10	10			0.4	5	5	5	U.I	5	5				0.1	0.2				20		50
Control Cont											_														_								
Manual Part							+																	_									
Mary North Mary Nort			FORMS, Z to SHII, Saliu												3000	900	3600	240000	1500	730	6000	400000	100	INL	INL			INL	INL	INL		IVL	
Second S			Soil for Vapour Intrusion S	Sand											3000	300	3300	243000	1300	, 30	0000	+00000											
Second S		1102 5 6011111,1114	on for tupour marusion, s	74114																			3	NL	NL			230	NL	260		NL	
Amount							1																_	_									
Field B. Carcine Color Sumple Leght Into Mortin y Sumple Leght Into Mortin							1																	_									
Field_D							1																_										
Sepontal 1.50 Sepontal																																	
DUMPS GHD-HH 0.5-06 SWR20138 OII Field D C C C C C C C C C	Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Ti	ime Matrix_Type	e Sample_Type																											
Separate 19-14 19-15 1	GHD-BH1_0.5-0.6	GHD-BH1	0.5-0.6	8/08/2018	soil	Normal	-	8.6	- 11	1 -	-	-	-	No Asbestos Detected	7.8	<0.4	9.9	<5	<5	<0.1	<5	11	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50
Decompose 19-235 19-235 2407/2018 501	DUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field_D	-	-	- 11	1 -		-	-	-	8	< 0.4	11	5.2	<5	<0.1	<5	12	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50
Dignostical	GHD-BH1_2.0-2.1	GHD-BH1	2-2.1	8/08/2018	soil	Normal	-	8.8	- 21	1 -	-	-	-	-	5.8	<0.4	5.4	<5	8.1	<0.1	<5	10	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50
Sem	GHD_BH2_1.9-2.35	GHD-BH2	1.9-2.35	23/07/2018	soil	Normal	-	7	- 13	3 -	-	-	-	No Asbestos Detected	<2	< 0.4	<5	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50
Dumpo Girb-Hard 3-5-195 24/07/2018 Soil Field D - - - - - - - - -	DUP01	GHD-BH2	1.9-2.35	23/07/2018	soil	Field_D	-	-	- 12	2 -		-	-	-	<2	<0.4	6.2	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50
GHD-BH3_15-195 GHD-	GHD_BH2_3.5-3.95	GHD-BH2	3.5-3.95	23/07/2018	soil	Normal	-	5.1	- 14	4 -		-	-	-	<2	< 0.4	5.5	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50
GRD-BH, 4.5.4-95 GRD-BH, 4.5.4	DUP02		+			Field_D	-			_		-	-	-	<2	<0.4		<5		_	<5		_	<0.1		_	_	<0.3			_		_
GRD-BHQ-15-0-6-4-5 GRD-BHQ-15-19-5 GRD-BHQ-15-	GHD-BH03_1.5-1.95		+			Normal	-			_		-	-	No Asbestos Detected	_	<0.4		<5		_			_	<0.1		_	_				_		_
GHD-BH4_1_5_1_0_5_6_ GHD-BH4_4_1_5_1_0_5_5_6_ GHD-BH4_1_5_1_0_5_5_6_ GHD-BH4_1_5_1_0_5_6_ GHD-			+			Normal	ļ -			_	-	-	-	-	-	_	_	_		_			_	_		_	_	_			_		_
GHD-BH4 15-0.5-4-5-5 GHD-BH4 15-0.5-5-5 GHD-BH4 15-0.5-5-5 GHD-BH5 16-2.05 GHD			+			Normal	-	6.9		_	- -	-	_		-	_	_	_		-			_	_	_	_	_	_		_	_		-
GHD-BH4_A 5.4.95 GHD-BH4			+			Normal	-			_	- -	-	-	No Asbestos Detected	_	_	_	_		_			_	_	_	_	_	_		_	_		_
GHD-BHS 1.6-2.05 GHD-BHS 1.6-2.05 11/07/2018 Soil Normal Soil Norm			+				_			_	-	_		-	_	_	_	_	_	_			_	_	_	_	_	_			_		_
GHD-BH5_2.8-3.25 GHD-BH5			+				+			_	-	-			-	_	_	_		_			_	_		_	_	_			_		_
GHD-BHG_4.54.95 GHD-BHG 0.4-0.5 GHD-BHG 0.4-0.			+				_			_	_	-	_	No Asbestos Detected	-	_		_		_			_	_		_	_	_			_		_
GHD-BHG_04-0.5 GHD-BHG 0.4-0.5 GHD-BHG 0.4-0.5 GHD-BHG 0.0-1 C7/09/2018 S0II Normal 650			+				+			_	_	-		-	_	_		_		_			_	_		_	_	_			_		_
GHD-BHG_0.0-0.1 GHD-BHG 0-0.1 27/09/2018 soil Normal 650			+				_			_	_	_	_		-	_	_	_	_	-				_	_	_	_				_		_
GHD-BH7_04-0.5 GHD-BH7 04-0.5 GHD-BH7 04-0.5 GHD-BH7 04-0.5 GHD-BH7 04-0.5 GHD-BH7 04-0.5 GHD-BH7_09-1.0 GHD-BH7 09-1 07/99/2018 soil Normal 940 - 53 11 5.4 27 36 No.Asbesto. Detected 5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4			+				_				-	_	_		-	_	_	_	_	-			_	_	_	_	_	_			_		_
GHD-BH7_0.9-1.0 GHD-BH7 0.9-1 27/09/2018 soil Normal 940 - 53 11 5.4 27 36 No Asbestos Detected			+				_				_	_	_	INO ASDESIOS DETECTED	-	_		_	_	-			_	_		_	_				_		_
GHD-BH7_0.0-0.1 GHD-BH7 0-0.1 27/09/2018 soil Normal 530 - 94 11 5.4 77 13 No Asbestos Detected - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.			+							_	_			No Achartar Datasta		_	_	_						_									-
GHD-BH7_1.5-1.6 GHD-BH7 H7_1.5-1.6 GHD-BH7 H7_1.5-1.6 GHD-BH7 H7_1.5-1.6 GHD-BH7 H7_1.5-1.6 GHD-BH7 H7_1.5-1.6 GHD-BH7_1.5-1.6 GHD-BH7 H7_1.5-1.6			+				_	ļ		_	-	-	_			_	+	-	<u> </u>	-				-	-	_					-		\vdash
GHD-BH7_1.9-2.0 GHD-BH7			+				_			_	_	_	_					-5	16					<0.1		_					-		<50
GHD-SI01 GHD-SI01 27/09/2018 soil Normal No Asbestos Detected										_	_				_	_	_	_	_	-			_	-							- 1		
GHD-SI02			1.5 2				_			_	_	_	_	No Ashestos Detected		-	+	_	-				_	_	_					_			_
GHD-SI03 GHD-SI03 27/09/2018 soil Normal No Asbestos Detected							+				-	_	_		H	-	+	_	-				-	_			_			_			_
GHD-SI04 GHD-SI04 27/09/2018 soil Normal No Asbestos Detected							_				_	-	_		<u> </u>	-	+	-	-				-		_					_			_
GHD-SI05 GHD-SI05 27/09/2018 soil Normal No Asbestos Detected							_			_	_	-	_			-	+	-	-				-		_	_				_			_
							+				_	_	_		_	-	+	-	-				-		_					_			-
	GHD-SI06	GHD-SI06		27/09/2018	soil	Normal	 	-		_	_	_	_	No Asbestos Detected	<u> </u>	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-



GHD											Com	, toouit	Jiubi	c (mann	un nou	iai Gai	uciiiics	,																			
						:013				TRH	- NEPM	1999											PA	Hs									\Box				
						3 (>C16-C34 Fraction)	4 (>C34-C40 Fraction)	:C10-C40 (Sum of Total)	.6-C9 Fraction	:10-C14 Fraction	:15-C28 Fraction	:29-C36 Fraction	210-C36 (Sum of Total)	cenaphthene	cenaphthylene	unthracene	ienz(a)anthracene	ienzo(a) pyrene	enzo[b+j]fluoranthene	ienzo(k)fluoranthene	enzo(g,h,i)perylene	.hrysene	oibenz(a,h)anthracene	luoranthene	luorene	ndeno(1,2,3-c,d)pyrene	laphthalene-PAH	henanthrene	yrene	AHs (Sum of total) - Lab calc	otal 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	otal 8 PAHs (as BaP TEQ)(half LOR) - Lab Calc	otal 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc	organochlorine pesticides EPAVic	Other organochlorine pesticides EPAVic	.4-ррЕ	-внс
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	ng/kg
EQL						100	100	100	20	20	50	50	50	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.05	ა.05
CRC CARE 2011 Soil Dir	ect Contact Intrusi	ve Works				85000	120000																				29000										
CRC CARE 2011 Soil HS	L Vap.Int Intrusive	Works,0 to <2m,Sand																									NL										
CRC CARE 2011 Soil HS	L Vap.Int Intrusive	Works,2 to <4m,Sand																									NL										
NEPM 2013 Table 1A(1) HIL D Comm/Ind																													4000	40	40	40				
NEPM 2013 Table 1A(3) HSL D Comm/Ind	Soil for Vapour Intrusion,	Sand																																		
0-1m																											NL										
1-2m																											NL										
2-4m																											NL										
>4m																											NL										
Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Time	Matrix_Type	Sample_Type																																
GHD-BH1_0.5-0.6	GHD-BH1	0.5-0.6	8/08/2018	soil	Normal	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	0.9	1.9	<0.5	0.6	1.2	<0.1	<0.1	<0.05 <	0.05
DUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field_D	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	0.7	1.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05 <	<0.05
GHD-BH1_2.0-2.1	GHD-BH1	2-2.1	8/08/2018	soil	Normal	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	-	-
GHD_BH2_1.9-2.35	GHD-BH2	1.9-2.35	23/07/2018	soil	Normal	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05 <	0.05
DUP01	GHD-BH2	1.9-2.35	23/07/2018	soil	Field_D	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05 <	0.05
GHD BH2 3.5-3.95	GHD-BH2	3 5-3 95	23/07/2018	soil	Normal	<100	<100	- T	<20	<20	<50	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	12	<0.1	<0.1	<0.05 <	:0.05

Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Time	Matrix_Type	Sample_Type																																
GHD-BH1_0.5-0.6	GHD-BH1	0.5-0.6	8/08/2018	soil	Normal	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	0.9	1.9	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
DUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field_D	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	0.8	<0.5	<0.5	< 0.5	<0.5	0.7	1.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD-BH1_2.0-2.1	GHD-BH1	2-2.1	8/08/2018	soil	Normal	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	- 1	-
GHD_BH2_1.9-2.35	GHD-BH2	1.9-2.35	23/07/2018	soil	Normal	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
DUP01	GHD-BH2	1.9-2.35	23/07/2018	soil	Field_D	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD_BH2_3.5-3.95	GHD-BH2	3.5-3.95	23/07/2018	soil	Normal	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
DUP02	GHD-BH2	3.5-3.95	23/07/2018	soil	Field_D	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD-BH03_1.5-1.95	GHD-BH3	1.5-1.95	13/07/2018	soil	Normal	<100	<100	-	<20	24	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	< 0.05
GHD-BH3_4.5-4.95	GHD-BH3	4.5-4.95	13/07/2018	soil	Normal	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD-BH3_6.0-6.45	GHD-BH3	6-6.45	13/07/2018	soil	Normal	<100	<100	-	<20	24	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	- 1	-
GHD-BH4_1.5_1.95	GHD-BH4	1.5-1.95	30/07/2018	soil	Normal	<200	<200	<100	<40	<40	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	1.2	2.4	<0.1	<0.1	<0.05	<0.05
GHD-BH4_15.0_15.45	GHD-BH4	15-15.45	30/07/2018	soil	Normal	200	<100	310	<20	130	120	130	380	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	-	-
GHD-BH4_4.5_4.95	GHD-BH4	4.5-4.95	30/07/2018	soil	Normal	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD-BH5_1.6-2.05	GHD-BH5	1.6-2.05	11/07/2018	soil	Normal	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD-BH5_2.8-3.25	GHD-BH5	2.8-3.25	11/07/2018	soil	Normal	<100	<100	-	<20	28	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD-BH5_4.5-4.95	GHD-BH5	4.5-4.95	11/07/2018	soil	Normal	<100	<100	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	-	-
GHD-BH6_0.4-0.5	GHD-BH6	0.4-0.5	27/09/2018	soil	Normal	110	<100	110	<20	<20	65	73	138	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	- 1	-
GHD-BH6_0.0-0.1	GHD-BH6	0-0.1	27/09/2018	soil	Normal	150	<100	150	<20	<20	82	110	192	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05
GHD-BH7_0.4-0.5	GHD-BH7	0.4-0.5	27/09/2018	soil	Normal	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	- 1	-
GHD-BH7_0.9-1.0	GHD-BH7	0.9-1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-
GHD-BH7_0.0-0.1	GHD-BH7	0-0.1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-	-	<0.1	<0.1	<0.05	<0.05
GHD-BH7_1.5-1.6	GHD-BH7	1.5-1.6	27/09/2018	soil	Normal	<100	<100	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	- 1	-
GHD-BH7_1.9-2.0	GHD-BH7	1.9-2	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
GHD-SI01	GHD-SI01		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	- 1	-
GHD-SI02	GHD-SI02		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- T	-
GHD-SI03	GHD-SI03		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	- T	-
GHD-SI04	GHD-SI04		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	- 1	-	- 1	
GHD-SI05	GHD-SI05		27/09/2018	soil	Normal	-	-	-	-	- 1	-	- 1	-	-	-	-	-	- 1	-	-	-	-	-	- 1	-	-	-	-	-	- 1	-	-	-	- 1	-	- 1	-
GHD-SI06	GHD-SI06		27/09/2018	soil	Normal	-	-	-	-	-	-	[-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-			-

													0	C Pesticio	les															PC	Bs			
								Π																										T
						Adrin	Aldrin + Dieldrin	PBHC	Chlordane	д- ВИС	4,4 DDD	4,4 DDT	DDT+DDE+DDD - Lab Calc	Dieldrin	Endosulfan I (alpha)	Endosulfan II (beta)	ndosulfan Sulfate	indrin	Endrin aldehyde	Endrin ketone	ş-BHC (Lindane)	Heptachlor	Jeptachlor epoxide	- Hexachlorobenzene	Methoxychlor	Toxaphene	Arochlor 1016	Arochlor 1221	Arochlor 1232	arochlor 1242	arochior 1248	Arochlor 1254	Arochlor 1260	PCBs (Total)
						mg/kg	-	mg/kg				mg/kg				_		mg/kg	_	_	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	_	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL						0.05	0.05	_	0.1	0.05		0.05		0.05				0.05	0.05				0.05		0.2	1	0.5	0.1	0.5		0.5	0.5	0.5	
CRC CARE 2011 Soil Dire																																		
CRC CARE 2011 Soil HSL																																		
CRC CARE 2011 Soil HSL		Works,2 to <4m,Sand																																
NEPM 2013 Table 1A(1)	· · · · · · · · · · · · · · · · · · ·	Soil for Vanous Interes's	Cand				45		530				3600					100				50		80	2500	160								7
0-1m	HSL D COMM/IND	Soil for Vapour Intrusion,	Sand																															
1-2m																																		-
2-4m						_			_																									\vdash
>4m																																		
Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Tim	e Matrix_Typ	e Sample_Type																													
GHD-BH1_0.5-0.6	GHD-BH1	0.5-0.6	8/08/2018	soil	Normal	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
DUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field_D	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH1_2.0-2.1	GHD-BH1	2-2.1	8/08/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD_BH2_1.9-2.35	GHD-BH2	1.9-2.35	23/07/2018	soil	Normal	<0.05	<0.05	_	<0.1	<0.05	<0.05	_	<0.05	<0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
DUP01	GHD-BH2	1.9-2.35	23/07/2018	soil	Field_D	<0.05	<0.05		<0.1	<0.05	<0.05	_	<0.05	<0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD_BH2_3.5-3.95 DUP02	GHD-BH2 GHD-BH2	3.5-3.95 3.5-3.95	23/07/2018	soil	Normal Field D	<0.05	<0.05	_	<0.1	<0.05	<0.05	_	<0.05	<0.05 <0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5 <0.5	<0.1	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5
GHD-BH03_1.5-1.95	GHD-BH3	1.5-1.95	13/07/2018	soil	Field_D Normal	<0.05	<0.05	_	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH3_4.5-4.95	GHD-BH3	4.5-4.95	13/07/2018	soil	Normal	<0.05	<0.05	_	<0.1	<0.05	<0.05	_	<0.05	<0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH3_6.0-6.45	GHD-BH3	6-6.45	13/07/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH4_1.5_1.95	GHD-BH4	1.5-1.95	30/07/2018	soil	Normal	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH4_15.0_15.45	GHD-BH4	15-15.45	30/07/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-
GHD-BH4_4.5_4.95	GHD-BH4	4.5-4.95	30/07/2018	soil	Normal	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH5_1.6-2.05	GHD-BH5	1.6-2.05	11/07/2018	soil	Normal	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH5_2.8-3.25	GHD-BH5	2.8-3.25	11/07/2018	soil	Normal	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH5_4.5-4.95	GHD-BH5	4.5-4.95	11/07/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH6_0.4-0.5	GHD-BH6	0.4-0.5	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH6_0.0-0.1	GHD-BH6	0-0.1	27/09/2018	soil	Normal	<0.05	<0.05	<0.05	<0.1	<0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	_	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH7_0.4-0.5	GHD-BH7	0.4-0.5 0.9-1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH7_0.9-1.0 GHD-BH7_0.0-0.1	GHD-BH7	0.9-1	27/09/2018 27/09/2018	soil	Normal	<0.05	<0.05	_	-	<0.05		<0.05			<0.05	<0.05	<0.05		<0.05		_		<0.05	<0.05		<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	
GHD-BH7_0.0-0.1 GHD-BH7_1.5-1.6	GHD-BH7	1.5-1.6	27/09/2018	soil	Normal	- 40.03	- 0.03	- 40.03	- 0.1			- 0.03	-	-	-	- 0.03	-	- 0.03			-		-	-	- 40.2	-	-		-			-		- 0.5
GHD-BH7_1.9-2.0	GHD-BH7	1.9-2	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
GHD-SI01	GHD-SI01	1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI02	GHD-SI02	1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI03	GHD-SI03		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI04	GHD-SI04		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI05	GHD-SI05		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GHD-SI06		27/09/2018																															

		Field Parameters	Inc	organic	:s	Majo	r Ions	Asbestos				Me	tals							BTEXN	1					TRH - I	NEPM 2	013	
	Resistivity*	pH (Field)	Electrical conductivity (lab)	Moisture Content (dried @ 103°C)	pH (aqueous extract)	Chloride	Sulfate	Asbestos Reported Result	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene (BTEXN)	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)
	OHM.M	pH Units	μS/cm	% p	H Units	mg/kg	mg/kg	Comment	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg ı	mg/kg	mg/
LL	0.5	0.1	5	1	0.1	10	10		2	0.4	5	5	5	0.1	5	5	0.1	0.1	0.1	0.1	0.2	0.3	0.5	20	20	50	50	100	100
W EPA (2014) General Solid Waste CT1 (No Leaching)									100	20	100		100	4	40		10	288	600			1000							
V EPA (2014) Restricted Solid Waste CT2 (No Leaching)									400	80	400		400	16	160		40	1152	2400			4000							

Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Time	Matrix_Type	Sample_Type																													
GHD-BH1_0.5-0.6	GHD-BH1	0.5-0.6	8/08/2018	soil	Normal	-	8.6	-	11	-	-	-	No Asbestos Detected	7.8	<0.4	9.9	<5	<5	<0.1	<5	11	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
DUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field_D	-	-	-	11	-	-	-	-	8	<0.4	11	5.2	<5	<0.1	<5	12	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH1_2.0-2.1	GHD-BH1	2-2.1	8/08/2018	soil	Normal	-	8.8	-	21	-	-	-	-	5.8	<0.4	5.4	<5	8.1	<0.1	<5	10	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD_BH2_1.9-2.35	GHD-BH2	1.9-2.35	23/07/2018	soil	Normal	-	7	-	13	-	-	-	No Asbestos Detected	<2	<0.4	<5	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
DUP01	GHD-BH2	1.9-2.35	23/07/2018	soil	Field_D	-	-	-	12	-	-	-	-	<2	<0.4	6.2	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD_BH2_3.5-3.95	GHD-BH2	3.5-3.95	23/07/2018	soil	Normal	-	5.1	-	14	-	-	-	-	<2	<0.4	5.5	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
DUP02	GHD-BH2	3.5-3.95	23/07/2018	soil	Field_D	-	-	-	16	-	-	-	-	<2	<0.4	6.1	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH03_1.5-1.95	GHD-BH3	1.5-1.95	13/07/2018	soil	Normal	-	6.8	-	12	-	-	-	No Asbestos Detected	<2	<0.4	5.3	<5	12	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH3_4.5-4.95	GHD-BH3	4.5-4.95	13/07/2018	soil	Normal	-	6.1	-	20	-	-	-	-	20	<0.4	37	<5	9.5	<0.1	6.7	38	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH3_6.0-6.45	GHD-BH3	6-6.45	13/07/2018	soil	Normal	-	6.9	-	21	-	-	-	-	<2	< 0.4	27	6.3	15	<0.1	<5	15	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH4_1.5_1.95	GHD-BH4	1.5-1.95	30/07/2018	soil	Normal	-	-	-	43	-	-	-	No Asbestos Detected	18	<0.4	18	<5	5.7	<0.1	7.6	16	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<1	<40	<40	<100	<100	<200	<200
GHD-BH4_15.0_15.45	GHD-BH4	15-15.45	30/07/2018	soil	Normal	-	4.9	-	16	-	-	-	-	3.8	<0.4	30	11	12	<0.1	5.2	10	<0.1	<0.1	<0.1	<0.1	0.2	<0.3	<0.5	29	29	110	110	200	<100
GHD-BH4_4.5_4.95	GHD-BH4	4.5-4.95	30/07/2018	soil	Normal	-	4.7	-	10	-	-	-	-	<2	<0.4	6.7	<5	<5	<0.1	<5	<5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH5_1.6-2.05	GHD-BH5	1.6-2.05	11/07/2018	soil	Normal	-	8.1	-	18	-	-	-	No Asbestos Detected	<2	1	5.4	<5	21	<0.1	<5	77	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH5_2.8-3.25	GHD-BH5	2.8-3.25	11/07/2018	soil	Normal	-	6.4	-	18	-	-	-	-	8.4	<0.4	32	<5	6.6	<0.1	<5	13	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH5_4.5-4.95	GHD-BH5	4.5-4.95	11/07/2018	soil	Normal	-	4.7	-	17	-	-	-	-	5.8	< 0.4	13	<5	8.7	<0.1	<5	<5	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH6_0.4-0.5	GHD-BH6	0.4-0.5	27/09/2018	soil	Normal	-	-	-	11	-	-	-	-	4.7	< 0.4	10	<5	18	<0.1	<5	32	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	110	<100
GHD-BH6_0.0-0.1	GHD-BH6	0-0.1	27/09/2018	soil	Normal	650	-	77	14	5.9	57	14	No Asbestos Detected	4.1	< 0.4	8.3	<5	23	<0.1	<5	39	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	150	<100
GHD-BH7_0.4-0.5	GHD-BH7	0.4-0.5	27/09/2018	soil	Normal	-	-	-	11	-	-	-	-	4	< 0.4	9.8	<5	13	<0.1	<5	22	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH7_0.9-1.0	GHD-BH7	0.9-1	27/09/2018	soil	Normal	940	-	53	11	5.4	27	36	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	- !	-	-	-	-	-	-	-
GHD-BH7_0.0-0.1	GHD-BH7	0-0.1	27/09/2018	soil	Normal	530	-	94	11	5.4	77	13	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	- !	-	-	-	-	-	-	-
GHD-BH7_1.5-1.6	GHD-BH7	1.5-1.6	27/09/2018	soil	Normal	-	-	-	16	-	-	-	-	12	< 0.4	25	<5	16	<0.1	<5	5.8	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100
GHD-BH7_1.9-2.0	GHD-BH7	1.9-2	27/09/2018	soil	Normal	47	-	1100	18	4.8	42	140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI01	GHD-SI01		27/09/2018	soil	Normal	-	-	-	-	-	-	-	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	- !	-	-	-	-	-	-	-
GHD-SI02	GHD-SI02		27/09/2018	soil	Normal	-	-	-	-	-	-	-	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI03	GHD-SI03		27/09/2018	soil	Normal	-	-	-	-	-	-	-	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI04	GHD-SI04		27/09/2018	soil	Normal	-	-	-	-	-	-	-	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI05	GHD-SI05		27/09/2018	soil	Normal	-	-	-	-	-	-	-	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-]	-	-	-	-	-	-
GHD-SI06	GHD-SI06		27/09/2018	soil	Normal	-	-	-	-	-	-	-	No Asbestos Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-

								TRH	- NEPM	1999											PAH	s														
						>C10-C40 (Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 (Sum of Total)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo[b+j]fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene-PAH	Phenanthrene	Pyrene	PAHs (Sum of total) - Lab calc	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(half LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc	Organochlorine pesticides EPAVic	Other organochlorine pesticides EPAVic	4,4-DDE	э-внс	Aldrin
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	ıg/kg r
EQL						100	20	20	50	50	50	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.05	0.05	0.05
NSW EPA (2014) Gen	eral Solid Waste CT1	(No Leaching)					650				10000					0.8												200								
NSW EPA (2014) Rest	tricted Solid Waste C	T2 (No Leaching)					2600				40000					3.2												800								
Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Tin	ne Matrix_Type	e Sample_Type																															
GHD-BH1_0.5-0.6	GHD-BH1	0.5-0.6	8/08/2018	soil	Normal	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	0.9	1.9	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05 <0	0.05 <
DUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field_D	<100		<20	<50		<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	0.8	<0.5	<0.5	<0.5	<0.5	0.7					<0.1	<0.1	<0.05	<0.05 <0	0.05
CUD BUIL 2 0 2 1	CUD DUI	2.2.1	0/00/2010	aail	Managal	-100	-20	-20	-50	-50	-50	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-O F	-0.5	-O.F	-O.F	-O F	0.6	4.2					

Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Time	Matrix_Type	Sample_Type																																
GHD-BH1_0.5-0.6	GHD-BH1	0.5-0.6	8/08/2018	soil	Normal	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	0.9	1.9	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
DUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field_D	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	0.7	1.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH1_2.0-2.1	GHD-BH1	2-2.1	8/08/2018	soil	Normal	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	1 -	-	- 1	-
GHD_BH2_1.9-2.35	GHD-BH2	1.9-2.35	23/07/2018	soil	Normal	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
DUP01	GHD-BH2	1.9-2.35	23/07/2018	soil	Field_D	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD_BH2_3.5-3.95	GHD-BH2	3.5-3.95	23/07/2018	soil	Normal	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
DUP02	GHD-BH2	3.5-3.95	23/07/2018	soil	Field_D	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH03_1.5-1.95	GHD-BH3	1.5-1.95	13/07/2018	soil	Normal	-	<20	24	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH3_4.5-4.95	GHD-BH3	4.5-4.95	13/07/2018	soil	Normal	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH3_6.0-6.45	GHD-BH3	6-6.45	13/07/2018	soil	Normal	-	<20	24	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	-	- 1	- 1	-
GHD-BH4_1.5_1.95	GHD-BH4	1.5-1.95	30/07/2018	soil	Normal	<100	<40	<40	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	1.2	2.4	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH4_15.0_15.45	GHD-BH4	15-15.45	30/07/2018	soil	Normal	310	<20	130	120	130	380	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	-	-	-	- 1	- 1	-
GHD-BH4_4.5_4.95	GHD-BH4	4.5-4.95	30/07/2018	soil	Normal	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH5_1.6-2.05	GHD-BH5	1.6-2.05	11/07/2018	soil	Normal	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH5_2.8-3.25	GHD-BH5	2.8-3.25	11/07/2018	soil	Normal	-	<20	28	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	<0.1	< 0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH5_4.5-4.95	GHD-BH5	4.5-4.95	11/07/2018	soil	Normal	-	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	-	-	-	-	-	-
GHD-BH6_0.4-0.5	GHD-BH6	0.4-0.5	27/09/2018	soil	Normal	110	<20	<20	65	73	138	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	-	-	-	-	- 1	-
GHD-BH6_0.0-0.1	GHD-BH6	0-0.1	27/09/2018	soil	Normal	150	<20	<20	82	110	192	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	<0.1	< 0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH7_0.4-0.5	GHD-BH7	0.4-0.5	27/09/2018	soil	Normal	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	-	-	-	-	- 1	-
GHD-BH7_0.9-1.0	GHD-BH7	0.9-1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
GHD-BH7_0.0-0.1	GHD-BH7	0-0.1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05
GHD-BH7_1.5-1.6	GHD-BH7	1.5-1.6	27/09/2018	soil	Normal	<100	<20	<20	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.6	1.2	-	-	-	-	-	-
GHD-BH7_1.9-2.0	GHD-BH7	1.9-2	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
GHD-SI01	GHD-SI01		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
GHD-SI02	GHD-SI02		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
GHD-SI03	GHD-SI03		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
GHD-SI04	GHD-SI04		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
GHD-SI05	GHD-SI05		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
GHD-SI06	GHD-SI06		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 7	, -T	-

											00	C Pesticio	des															PC	Bs		
						. ВНС	Chlordane	-ВНС	,4 DDD	,4 ррт	DDT+DDE+DDD - Lab Calc	Dieldrin	ndosulfan I (alpha)	indosulfan II (beta)	ndosulfan Sulfate	ndrin	Endrin aldehyde	indrin ketone	-BHC (Lindane)	eptachlor	leptachlor epoxide	exachlorobenzene	nethoxychlor	oxaphene	rochlor 1016	rochlor 1221	rochlor 1232	rochlor 1242	rochlor 1248	Arochior 1254	rochlor 1260
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	-		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	_	mg/kg
QL						0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	1	0.5	0.1	0.5	0.5	0.5	0.5	0.5
ISW EPA (2014) General		· •																													
ISW EPA (2014) Restrict	ed Solid Waste CT	2 (No Leaching)																													
Field_ID	Location Code	Sample Donth Page	Sampled Date Ti	imo Matrix Timo	Sample Time																										
GHD-BH1 0.5-0.6	GHD-BH1	Sample_Depth_Range 0.5-0.6	8/08/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
OUP03	GHD-BH1	0.5-0.6	8/08/2018	soil	Field D	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH1 2.0-2.1	GHD-BH1	2-2.1	8/08/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD BH2 1.9-2.35	GHD-BH2	1.9-2.35	23/07/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
DUP01	GHD-BH2	1.9-2.35	23/07/2018	soil	Field D	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD BH2 3.5-3.95	GHD-BH2	3.5-3.95	23/07/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
DUP02	GHD-BH2	3.5-3.95	23/07/2018	soil	Field_D	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH03_1.5-1.95	GHD-BH3	1.5-1.95	13/07/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH3_4.5-4.95	GHD-BH3	4.5-4.95	13/07/2018	soil	Normal	<0.05	<0.1	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH3_6.0-6.45	GHD-BH3	6-6.45	13/07/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH4_1.5_1.95	GHD-BH4	1.5-1.95	30/07/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH4_15.0_15.45	GHD-BH4	15-15.45	30/07/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	- 1	-
GHD-BH4_4.5_4.95	GHD-BH4	4.5-4.95	30/07/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH5_1.6-2.05	GHD-BH5	1.6-2.05	11/07/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH5_2.8-3.25	GHD-BH5	2.8-3.25	11/07/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH5_4.5-4.95	GHD-BH5	4.5-4.95	11/07/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-]	-	-	-	-	-	-	-
GHD-BH6_0.4-0.5	GHD-BH6	0.4-0.5	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH6_0.0-0.1	GHD-BH6	0-0.1	27/09/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH7_0.4-0.5	GHD-BH7	0.4-0.5	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH7_0.9-1.0	GHD-BH7	0.9-1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH7_0.0-0.1	GHD-BH7	0-0.1	27/09/2018	soil	Normal	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
GHD-BH7_1.5-1.6	GHD-BH7	1.5-1.6	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-BH7_1.9-2.0	GHD-BH7	1.9-2	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI01	GHD-SI01		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI02	GHD-SI02		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHD-SI03	GHD-SI03		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SHD-SI04	GHD-SI04		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SHD-SI05	GHD-SI05		27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SHD-SI06	GHD-SI06	1	27/09/2018	soil	Normal	-	-	-	-	-	-	-	-	-	- 1	- 1			- 1	- 1	-	-	- 1	-	-		- 1	- 1			-

				Me	etals							BTEXN	ı					TRH - N	EPM 20	13			T	RH - N	EPM 19	99							PAH
	Arsenic (Filtered)	Cadmium (Filtered)	Chromium (III+VI) (Filtered)	Copper (Filtered)	Lead (Filtered)	Mercury (Filtered)	Nickel (Filtered)	Zinc (Filtered)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene (BTEXN)	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	tion	C10-C14 Fraction	827-6	C.CC.36 (Sum of Total)	Acenaphthene	Acenaphthylene	Anthracene Benz(a)anthracene	Benzo(a) pyrene	Benzo[b+j]fluoranthene	benzo(g,h,i)perylene	
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L μ	ιg/L με	g/L με	g/L με	g/L μg/	L μg/L	μg/L μ	g/L μg/l	_ μg/L	μg/L μ	g/L μg/	′L μg/L μ
EQL	0.001	0.0002	0.001	0.001	0.001	0.0001				1	1	1	2	3	10	20	20	50	50	100	100	100	20 5	50 1	00 1	00 100		1	1 1	1	1	1 1	1
NEPM 2013 Table 1A(4) HSL D Comm/Ind GW for Vapour Intrusion, Sand																																	
2-4m									5000	NL	NL			NL	NL	6000		NL															
4-8m									5000	NL	NL			NL	NL	6000		NL															
>8m									5000	NL	NL			NL	NL	7000		NL															
NEPM 2013 Table 1C GILs, Marine Waters		0.0007	0.0044	0.0013	0.0044	0.0001	0.007	0.015	500						50																		
Field_ID Location_Code Sampled_Date_Time Sample_Type Location_Tyj	oe .																																
GHD-BH1-GW GHD-BH1 27/09/2018 Normal BH	0.002	<0.0002	0.004	0.009	0.003	< 0.0001	0.02	0.044	<1	<1	<1	<1	<2	<3	<10	<20	<20	<50	<50	<100	<100	<100	<20 <	50 <1	.00 <1	.00 <10	0 <1	<1	<1 <1	<1	<1 <	1 <1	<1

																			00	C Pestic	ides															PCB	s		
	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene-PAH	Phenanthrene	Pyrene	PAHs (Sum of total) - Lab calc	Organochlorine pesticides EPAVic	Other organochlorine pesticides EPAVic	4,4-DDE	а-ВНС	Aldrin	Aldrin + Dieldrin	ь-внс	Chlordane	д-ВНС	4,4 DDD	4,4 DDT	DDT+DDE+DDD - Lab Calc	Dieldrin	Endosulfan I (alpha)	Endosulfan II (beta)	Endosulfan Sulfate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Toxaphene	Arochlor 1016	Arochlor 1221	Arochlor 1232	ñ	Arochlor 1248	Arochlor 1260	PCBs (Total)
	μg/L			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			μg/L				_		μg/L		μg/L	μg/L	μg/L	_		μg/L	μg/L	μg/L		μg/L	μg/L	μg/L	μg/L		дg/L µg		/L μg/
EQL	1	1	1	1	1	1	1	1	1	0.1	0.1	0.1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	10	5	1	5	5	5 5	5 دُ	1
NEPM 2013 Table 1A(4) HSL D Comm/Ind GW for Vapour Intrusion, Sand																																							
2-4m				NL																																			
4-8m				NL																																			
>8m				NL																																			
NEPM 2013 Table 1C GILs, Marine Waters				50																				0.004															

Field_ID	Location_Code	Sampled_Date_Time	e Sample_Typ	e Location_T	ype																									
GHD-BH1-GW	GHD-BH1	27/09/2018	Normal	BH	<1 <1 <1	<1	<1 <1 <	1 <1	<1 <0.1	<0.1 <0	.1 <0.1	<0.1 <1	1 <0.1	<0.1 <	<0.1 <0	.1 <0.1	<0.1 <0	.1 <0.1	<0.1	<0.1 <	0.1 <0.	l <0.1	<0.1 <	0.1 <0.	1 <10	<5 <1	<5	<5 <5	<5 <	5 <1

Field Duplicates (soil Filter: ALL	1)		SDG Field ID Sampled Date/Time	9-Aug-18 GHD-BH1_0.5-0.6 8/08/2018	9-Aug-18 DUP03 8/08/2018	RPD	25-Jul-18 GHD_BH2_1.9-2.35 23/07/2018	25-Jul-18 DUP01 23/07/2018	RPD	25-Jul-18 GHD_BH2_3.5-3.95 23/07/2018	25-Jul-18 DUP02 23/07/2018	RPD
Chem_Group	ChemName	Units	EQL					- 10		ļ.,,	- 10	10
Inorganics	Moisture Content (dried @ 103°C)	%	1	11	11	0	13	12	8	14	16	13
Metals	Arsenic	mg/kg	2	7.8	8	3	<2	<2	0	<2	<2	0
	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium (III+VI)	mg/kg	5	9.9	11	11	<5	6.2	21	5.5	6.1	10
	Copper	mg/kg		<5	5.2	4	<5	<5	0	<5	<5	0
	Lead	mg/kg		<5	<5	0	<5	<5	0	<5	<5	0
	Mercury Nickel	mg/kg mg/kg	0.1	<0.1 <5	<0.1 <5	0	<0.1 <5	<0.1 <5	0	<0.1 <5	<0.1 <5	0
	Zinc	mg/kg		11	12	9	<5	<5	0	<5	<5	0
DTE:AL												
BTEXN	Benzene Toluene	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.1 <0.1	0
	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	Xylene (o)	mg/kg		<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	Xylene (m & p)	mg/kg		<0.2	<0.2	0	<0.2	<0.2	0	<0.2	<0.2	0
	Xylene Total Naphthalene (BTEXN)	mg/kg		<0.3	<0.3	0	<0.3	<0.3	0	<0.3	<0.3	0
	Naphthalene (BTEXN)	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
TRH - NEPM 2013	F1 (C6-C10 minus BTEX)	mg/kg	20	<20	<20	0	<20	<20	0	<20	<20	0
	C6-C10 Fraction	mg/kg	20	<20	<20	0	<20	<20	0	<20	<20	0
	F2 (>C10-C16 minus Naphthalene) >C10-C16 Fraction	mg/kg	50	<50 <50	<50 <50	0	<50 <50	<50 <50	0	<50 <50	<50 <50	0
	F3 (>C16-C34 Fraction)	mg/kg mg/kg		<100	<100	0	<100	<100	0	<100	<100	0
	F4 (>C34-C40 Fraction)	mg/kg	100	<100	<100	0	<100	<100	0	<100	<100	0
	>C10-C40 (Sum of Total)	mg/kg	100	<100	<100	0			Ē			Ė
TRH - NEPM 1999	C6-C9 Fraction			<20	<20	0	<20	<20	0	<20	<20	0
1101 - INFLIN 1999	C10-C14 Fraction	mg/kg mg/kg	20	<20	<20	0	<20	<20	0	<20	<20	0
	C15-C28 Fraction	mg/kg	50	<50	<50	0	<50	<50	0	<50	<50	0
	C29-C36 Fraction	mg/kg	50	<50	<50	0	<50	<50	0	<50	<50	0
	C10-C36 (Sum of Total)	mg/kg	50	<50	<50	0	<50	<50	0	<50	<50	0
PAHs	Acenaphthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benz(a)anthracene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(a) pyrene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo[b+j]fluoranthene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(k)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Chrysene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Fluoranthene	mg/kg	0.5	1	0.8	22	<0.5	<0.5	0	<0.5	<0.5	0
	Fluorene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Naphthalene-PAH	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Phenanthrene Pyrene	mg/kg mg/kg		<0.5 0.9	<0.5 0.7	0 25	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	PAHs (Sum of total) - Lab calc	mg/kg	0.5	1.9	1.5	24	<0.5	<0.5	0	<0.5	<0.5	0
	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Total 8 PAHs (as BaP TEQ)(half LOR) - Lab Calc	mg/kg	0.5	0.6	0.6	0	0.6	0.6	0	0.6	0.6	0
	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc	mg/kg	0.5	1.2	1.2	0	1.2	1.2	0	1.2	1.2	0
OC Pesticides	Organochlorine pesticides EPAVic	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	Other organochlorine pesticides EPAVic	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	4,4-DDE	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	a-BHC Aldrin	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Aldrin Aldrin + Dieldrin	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
	b-BHC	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Chlordane	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
	d-BHC	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	4,4 DDD	mg/kg		<0.05	<0.05	0	<0.05	< 0.05	0	<0.05	<0.05	0
	4,4 DDT DDT+DDE+DDD - Lab Calc	mg/kg mg/kg		<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
	Dieldrin	mg/kg mg/kg		<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Endosulfan I (alpha)	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Endosulfan II (beta)	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Endosulfan Sulfate	mg/kg	0.05	< 0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Endrin	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Endrin aldehyde	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Endrin ketone	mg/kg	0.05	<0.05 <0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	g-BHC (Lindane) Heptachlor	mg/kg mg/kg		<0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
	Heptachlor epoxide	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Hexachlorobenzene	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
	Methoxychlor	mg/kg	0.2	<0.2	<0.2	0	<0.2	<0.2	0	<0.2	<0.2	0
	Toxaphene	mg/kg	1	<1	<1	0	<1	<1	0	<1	<1	0
	Arochlor 1016	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
PCBs	Arochlor 1221	mg/kg		<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0
PCBs							<0.5	-0 E	0	<0.5	<0.5	
PCBs	Arochlor 1232	mg/kg	0.5	<0.5	<0.5	0		<0.5			~0.5	0
PCBs	Arochlor 1232 Arochlor 1242	mg/kg mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
PCBs	Arochlor 1232 Arochlor 1242 Arochlor 1248	mg/kg mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
PCBs	Arochlor 1232 Arochlor 1242	mg/kg mg/kg	0.5 0.5 0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0

[|] PrDs (10tal) | PrDs

GHD

Appendix D - Table D5 QAQC Rinsate Results Table

Field Blanks (water) Filter: ALL

SDG	2-Oct-18
Field ID	SI-RIN01
Sampled_Date/Time	27/09/2018
Sample Type	Rinsate

Chem_Group	ChemName	Units	EQL	
PAHs	Acenaphthene	μg/l	1	<1
	Acenaphthylene	μg/l	1	<1
	Anthracene	µg/l	1	<1
	Benz(a)anthracene	μg/l	1	<1
	Benzo(a) pyrene	µg/l	1	<1
	Benzo[b+j]fluoranthene	μg/l	1	<1
	Benzo(k)fluoranthene	μg/l	1	<1
	Benzo(g,h,i)perylene	μg/l	1	<1
	Chrysene	μg/l	1	<1
	Dibenz(a,h)anthracene	μg/l	1	<1
	Fluoranthene	μg/l	1	<1
	Fluorene	μg/l	1	<1
	Indeno(1,2,3-c,d)pyrene	μg/l	1	<1
	Naphthalene-PAH	μg/l	1	<1
	Phenanthrene	μg/l	1	<1
	Pyrene	µg/l	1	<1
	PAHs (Sum of total) - Lab calc	μg/l	1	<1

Appendix E – Laboratory Certificates

9		g n	
•	eu	rofi	ns

☑ Sydney

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400

Email: enviro.svd@mgtlabmark.com.au

B	ric	h	а	n	6

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mqtlabmark.com.au

Me	lbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Fax: +613 8564 5090 Phone: +613 8564 5000 Email: enquiries.melb@mgtlabmark.com.au

			11.14								(34/	AIN	OF	CU	Śī	OD.	Y F	E (0	O:	रा								i i			
CLIEN.	T DETAILS	NAME OF STREET OF STREET	0. 1			age was consistent	14(1)					CONTRACTOR OF THE PARTY OF THE		110000000000000000000000000000000000000														Pa	ge1	of1_		
Compa	ny Name : GHD Pty Ltd			Coi	ntact l	Name : (Clifton	Thom	psoo	n							Purchas	se Ord	er : 2	12742	5						COC Nun	iber : 1				
Office	Address :			Pro	ject N	lanager	: Just	in Kab	at							-	PROJEC	CT Nu	mber :	2127	425						Eurofins	mgt quot	e ID : 170	808GHDN		
L	evel 15, 133 Castlereagh Stree	t, Sydney NS	W 2000	Em	ail for	results	: clifte	on.tho	mpsc	n@gh	d.com					_	PROJEC	CT Na	ne : S	cotiar	nd Is	sland Ene	rgy Reliab	lity Projec	t		Data outp	out format:	Esdat, P	DF		
				\vdash								Anal	ytes											Sor	ne comm	on holding or further in	times (wi	th correct	preserva lab	ion).		
Specia	Directions & Comments :			400	metals)						Ú													Waters					s	oils		
				64-2	net						11.1	X										BTEX	, MAH, VO	С		14 days	BTEX	, MAH, VO	С		14 (days
Special	Directions & Comments :			S49	/8 n		-				玉	pHfox)					Ì					TRH,	PAH, Pher	ols, Pestic	ides	7 days	TRH,	PAH, Phen	iols, Pesti	cides		days
Zin loci	bag samples frozen overnight	and been on	ice all othe	- Y	(TRH/PAH/BTEXN/8	1				1	Suite (pH,	and p		-								Heavy	Metals			6 months	Heavy	/ Metals			6 m	onths
	Please freeze zip lock bags for				빝						Su	far										Mercu	ıry, CrVI			28 days	Mercu	ıry, CrVI			28 c	days
testing.	Thanks			/abs	皇	PCB	-	1	6		€ €	(pHf									1	Micro	oiological te	esting		24 hours	Microl	biological te	sting		72 h	hours
				nce.	PA	1 ~ 1			62-92		SSi/	en		İ	1							BOD,	Nitrate, Ni	rite, Total I	۷	2 days	Anion	S			28 c	days
				ese	품	OCP			ő		Aggressivity (Screen										Solids	- TSS, TD	S etc		7 days	SPOC	CAS, pH Fie	eld and FC)X, CrS	24 h	hours
Furofin	s mgt DI water batch number:			<u>a</u> □	E	9			TPH		Ag	Sp										Ferro	ıs iron			7 days	ASLP	, TCLP			7 da	ays
Luiomi	a mgc Di water batter number.	I Was Min and	W	_ so	B	B13	as		-		L2	Field		İ	1																	
	Sample ID	Date	Matrix	Asbest	O)	Suite	8 metals	BTEX	BTEX	TCLP	Suite Cl. Re	PH-F										Containe 1LP	250P	125P	1LA	40mL vial	125mL A	Jar	bag	Samp	ole comments	; :
- 1	GHD-BH03 1.5 1.95	13/07/2018	soil	4	10)	0)	100	+=	ш.		0,0	X	\vdash	-	+		_	┿	+	-	_	121	2001	1201	167	40IIIE VIAI	120ME A	1	1			
- 1	GHD-BH03 2.9 3.35	13/07/2018	soil	+	+		\dashv	+	-		_	X			-			+		\vdash						 		1	1			
3	GHD-BH3 4.5 4.95	13/07/2018	soil	+	+-	\vdash	+	+	\vdash	\vdash		X		\dashv	1		\dashv	+-		\vdash	_							1	1			
4	GHD-BH3 6.0 6.45	13/07/2018	soil		+-	\vdash	\dashv	-			+	X		\top					\top				·			1			1			
5	GHD-BH3 7.5 7.95	13/07/2018	soil	\top	1		+	+				X		\neg	_			1											1			
6	GHD-BH5 1.6 2.05	11/07/2018	soil	_		\vdash	_	1			_	X						+	\Box	\Box								1	1			
7	GHD-BH5 2.8 3.25	11/07/2018	soil		\top							Х						\top						-				1	1			
8	GHD-BH5_4.5_4.95	11/07/2018	soil	1								X																1	1			
9	GHD-BH5_6.0_6.45	11/07/2018	soil	\top	\top							Х																1	1			
10	GHD-BH5_7.5_7.95	11/07/2018	soil									X																1	1			
11																																
12	RIN1	13/07/2018	soil																													
13	TRIP1																															
14	BLANK1																															
15													Ш																			
16																																
		War - A - A - A - A - A - A - A - A - A -				! Lab	orator	y Staf	f			L			Tur	n arou	and time	e							Method C	of Shipmen	ıt			Temperatu	ure on arrival:	:
Relinq	uished By: Clifton Thompson		Rece	ived E	By:	lile	·W	,							=	1		~-7				□ с	ourier									
Date &	Time: 18:00, 13/07/2018	,	Date	& Tim	ie:	3/07	2/19	3	8:	371	Avi	1 DA	Υ 🗌	2 D/	\Y [_]	!	3 DAY							ered						Report nu	mber:	:
Signat	ure:		Sign	ature:	1/2	11/	$\frac{11^{3}}{11}$			ij		5 DA	Y 🗸	10 0	YAY		Other:				☑ Hand Delivered☑ PostalCourier Consignment # :								#6	04671		

Signature:

mgt

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400

Email: enviro.syd@mgtlabmark.com.au

	_	_	_		_	_
D	:	-	h	-	-	

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtlabmark.com.au

	ΝЛ	e	lh	-		20	2	c
- 1	IMI	_	ı	•	u			c

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mgtlabmark.com.au

											C	HA	IN (OF (JUS	IOI	JY F	KEC	ORI)										
	T DETAILS																									P	age1_	of1_		
Comp	any Name : GHD Pty Ltd			Con	tact I	Name :	Clifton	Thon	psoor	n						Purch	nase Or	der : 21	27425						COC Number : 1					
Office	Address:			Pro	ject M	lanager	: Justi	n Kal	oat			PROJECT Number : 2127425							Eurofins mgt quote ID : 170808GHDN											
L	evel 15, 133 Castlereagh Stree	et, Sydney NS	W 2000	Ema	all for results : clifton.thompson@ghd.com					PROJECT Name : Scotland Island Energy Reliability Project						Data output format: Esdat, PDF														
					_			_				Analyte	ne.				_		_	Т		So	me comm	on holding	g times (with correct preservation).				-	
Specia	al Directions & Comments :			-			_			_		Allalyte	75		-		_		_	-			F	or further in	formation c	ontact the	lab			
орсск	a birodons a comments .			2007	metals)						EC,					11						Waters					Sc	oils		
				964-	me				1 1		, E	pHfox)								BTEX	, MAH, VC	C		14 days	BTEX,	MAH, VO	C		14	4 days
Specia	pecial Directions & Comments : Ip lock bag samples frozen overnight and been on ice all other mes. Please freeze zip lock bags for possible future SPOCAS sisting. Thanks Policy Policy Policy Policy							Suite (pH,	됩	1							TRH,	PAH, Pher	nols, Pesti	cides	7 days	TRH,	PAH, Pher	nols, Pestic	ides		4 days			
Zip lock bag samples frozen overnight and been on ice all other				(e)	X						i e	P				1 1		1 1		Heav	y Metals			6 months	Heavy	Metals			6	months
times. Please freeze zip lock bags for possible future SPOCAS			e SPOCAS	sen	318	m					S	(pHf and						1 1		Mercu	ıry, CrVI			28 days	Mercu	ry, CrVI			28	3 days
testing. Thanks			a/ab	Ī	PCB			60		4 kity	<u>a</u>				1 1		1 1		Micro	biological t	esting		24 hours	Microb	oiological te	esting		72	2 hours	
				ence	/P/	_			0-90		SSS	e l				1 1				BOD,	Nitrate, Ni	trite, Total	N	2 days	Anions	3			28	3 days
				pres	F	OCP			일		ity,	Screen				1 1					- TSS, TE	OS etc		7 days	SPOC	AS, pH Fi	eld and FO	X, CrS	24	4 hours
Eurofin	s mgt DI water batch number:			0 (0	B7 (T	B13 (<u>s</u>		TPH		L2 Aggressivity (esistivity, S04)	Field S								Ferro	us iron			7 days	ASLP,	TCLP			7	days
	Sample ID	Date	Matrix	estos	Suite B	Suite B	8 metals	BTEX	BTEX/	TCLP	Suite L Cl, Res	- 1								Containe	rs:				_	-				
			mauix	Ask			8	BT	B	입	Su Ci,	표								1LP	250P	125P	1LA	40mL vial	125mL A	Jar	bag	Samp	le commen	is:
1	GHD-BH03_1.5_1.95	13/07/2018	soil	X	X	X						X														1	1			
2	GHD-BH03_2.9_3.35	13/07/2018	soil				-					X														1	1			- 1
3	GHD-BH3_4.5_4.95	13/07/2018	soil			X						X									-	-				1	1			
4	GHD-BH3_6.0_6.45	13/07/2018	soil	\vdash	X							X															1			
5	GHD-BH3_7.5_7.95	13/07/2018	soil	\perp								X															1			
6	GHD-BH5_1.6_2.05	11/07/2018	soil	Х		X						X														1	1			
7	GHD-BH5_2.8_3.25	11/07/2018	soil		X	X						X														1	1			
8	GHD-BH5_4.5_4.95	11/07/2018	soil		X							X														1	1			
9	GHD-BH5_6.0_6.45	11/07/2018	soil									X														1	1			
10	GHD-BH5_7.5_7.95	11/07/2018	soil				-			_		X	_	\perp			_									1	1			
11	DINA		20.41				+			-		-	-	+	-		-	\vdash	_											
12	RIN1 TRIP1	13/07/2018	soil	-			+	-	\vdash	+		-	-	++	-		-	\vdash	-	-				-						
13	BLANK1			\vdash			+	-	\vdash	-	-	+	+	++	-		-		-					-						
14	BLANKT			\vdash		-	+		-	-		-	-	+	+		-		-	-										
15							-		-	-		-	-	+	-	-	+	-	_	-										
10				_		1.0		C4-6				_			Turn are	ound tir	me		_	-								Tomporetu		
Relinquished By: Clifton Thompson Received		Laboratory Staff Ved By: Q.TIMBA					Turn around time				Method Of Shipment Courier						remperatui	re on arriva												
Date & Time : 18:00, 13/07/2018 Date &			16/7/18 11:06AM							2 DAY		3 DAY				✓ Hand Delivered □ Postal						Report num	nber:	2/						
Signature: Signature:						5 DAY 10 DAY Other:					Courier Consignment #:					60+6+1														

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: **GHD Pty Ltd NSW**

Contact name: Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Jul 13, 2018 8:37 PM Date/Time received:

Eurofins | mgt reference: 607671

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 4.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). Notes^{N/A}

GHD-BH5 9.0-9.15 Sample received extra (sample bag), sample placed on hold.|totals21| met13t|

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney **NSW 2000**

Clifton Thompson Attention: Report 607671-AID

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT **Project Name**

Project ID 2127425 **Received Date** Jul 13, 2018 **Date Reported** Jul 23, 2018

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil

Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be subsampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Report Number: 607671-AID

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425

Date Reported: Jul 23, 2018

Date Sampled Jul 11, 2018 to Jul 13, 2018

Report 607671-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
GHD-BH03_1.5-1.95	18-JI16677	Jul 13, 2018	Sample consisted of: Grey coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-BH5_1.6-2.05	GHD-BH5_1.6-2.05 18-JI16682 Jul 11, 2018		Sample consisted of: Beide coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Page 2 of 8 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 607671-AID

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJul 16, 2018Indefinite

Report Number: 607671-AID

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Melbourne 3-5 Kingston Town Close

Sydney Unit F3, Building F Oakleigh VIC 3166 16 Mars Road Phone: +61 3 8564 5000 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 18217

Brisbane

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

Phone: Fax:

607671 02 9239 7100

02 9239 7199

Received: Jul 13, 2018 8:37 PM Due: Jul 23, 2018

Priority: 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

NSW 2000

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project Name: Project ID: 2127425

		Sa		Asbestos - AS4964	HOLD	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7		
Melb	ourne Laborato											
	ney Laboratory		Х		Х		Х	Х	Х			
	bane Laboratory						Х		Х			
	h Laboratory - N		36									
	rnal Laboratory				1							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GHD- BH03_1.5-1.95	Jul 13, 2018		Soil	S18-JI16677	х			Х	Х	Х	х
2	GHD- BH03_2.9-3.35	Jul 13, 2018		Soil	S18-JI16678				Х			
3	GHD- BH3_4.5-4.95	Jul 13, 2018	_	Soil	S18-JI16679				Х	Х	Х	х
4	GHD- BH3_6.0-6.45	Jul 13, 2018		Soil	S18-JI16680				Х		Х	х
5	GHD- BH3_7.5-7.95	Jul 13, 2018		Soil	S18-JI16681				Х			
6	GHD-	Jul 11, 2018		Soil	S18-JI16682	Х			Х	Х	Х	Х

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 607671-AID

Page 4 of 8

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne

Site # 1254 & 14271

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place

Perth 2/91 Leach Highway Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261

Phone: +61 8 9251 9600 Site # 23736

Company Name:

GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name:

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Order No.: Received: Jul 13, 2018 8:37 PM

Report #: 607671 Due: Jul 23, 2018 Phone: 02 9239 7100 Priority: 5 Day

02 9239 7199 **Contact Name:** Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	HOLD	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
	bourne Laborate			271								
	ney Laboratory					Х		Х		Х	Х	Х
	bane Laborator						Х		Х			
Pert	h Laboratory - N	NATA Site # 237	36	1								
	BH5_1.6-2.05											
7	GHD- BH5_2.8-3.25	Jul 11, 2018		Soil	S18-JI16683				х	х	х	Х
8	GHD- BH5_4.5-4.95	Jul 11, 2018		Soil	S18-JI16684				х		х	Х
9	GHD- BH5_6.0-6.45	Jul 11, 2018		Soil	S18-JI16685				Х			
10	GHD- BH5_7.5-7.95	Jul 11, 2018		Soil	S18-JI16686				Х			
11	RIN1	Jul 13, 2018		Water	S18-JI16687			Х				
12	TRIP1	Jul 11, 2018		Soil	S18-JI16688			Х				
13	BLANK1	Jul 11, 2018		Soil	S18-JI16689			Х				
14	TRIP SPIKE LAB	Jul 11, 2018		Soil	S18-JI16690			Х				

Page 5 of 8

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 9239 7100

02 9239 7199

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHI

GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: Project ID: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

2127425

 Order No.:
 Received:
 Jul 13, 2018 8:37 PM

 Report #:
 607671
 Due:
 Jul 23, 2018

 Due:
 Jul 23, 2018

 Priority:
 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - AS4964	HOLD	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271								
Syd	ney Laboratory	- NATA Site # 1	8217			Х		Х		Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794				Х		Х			
Pert	h Laboratory - N	IATA Site # 237	36									
15	GHD- BH5_9.0-9.15	Jul 11, 2018		Soil	S18-JI16691		Х					
Test	Counts					2	5	5	10	4	6	6

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 6 of 8

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Jul 23, 2018

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 607671-AID

Comments

The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

Date Reported: Jul 23, 2018

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 607671-AID

⁻ Indicates Not Requested

 $^{^{\}star}$ Indicates NATA accreditation does not cover the performance of this service

Certificate of Analysis

ilac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson

Report 607671-S

Project name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Jul 13, 2018

Client Sample ID			GHD- BH03_1.5-1.95	GHD- BH03_2.9-3.35	GHD-BH3_4.5- 4.95	GHD-BH3_6.0- 6.45
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI16677	S18-JI16678	S18-JI16679	S18-JI16680
Date Sampled			Jul 13, 2018	Jul 13, 2018	Jul 13, 2018	Jul 13, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	24	-	< 20	24
TRH C15-C28	50	mg/kg	< 50	-	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	79	-	67	56
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	-	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5

Client Sample ID			GHD- BH03_1.5-1.95	GHD- BH03_2.9-3.35	GHD-BH3_4.5- 4.95	GHD-BH3_6.0- 6.45
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI16677	S18-JI16678	S18-JI16679	S18-JI16680
Date Sampled			Jul 13, 2018	Jul 13, 2018	Jul 13, 2018	Jul 13, 2018
Test/Reference	LOR	Unit			·	,
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	99	-	100	100
p-Terphenyl-d14 (surr.)	1	%	104	-	105	105
Organochlorine Pesticides	'					
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	_	< 0.05	_
4.4'-DDE	0.05	mg/kg	< 0.05	_	< 0.05	_
4.4'-DDT	0.05	mg/kg	< 0.05	_	< 0.05	_
a-BHC	0.05	mg/kg	< 0.05	_	< 0.05	_
Aldrin	0.05	mg/kg	< 0.05	_	< 0.05	_
b-BHC	0.05	mg/kg	< 0.05	_	< 0.05	_
d-BHC	0.05	mg/kg	< 0.05	_	< 0.05	_
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	_	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	=
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	=
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	=
Methoxychlor	0.2	mg/kg	< 0.2	-	< 0.2	=
Toxaphene	1	mg/kg	< 1	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	104	-	90	-
Tetrachloro-m-xylene (surr.)	1	%	114	-	100	-
Polychlorinated Biphenyls	·	<u> </u>				
Aroclor-1016	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	104	-	90	-
Tetrachloro-m-xylene (surr.)	1	%	114	-	100	-

Client Sample ID			GHD- BH03_1.5-1.95	GHD- BH03_2.9-3.35	GHD-BH3_4.5- 4.95	GHD-BH3_6.0- 6.45
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI16677	S18-JI16678	S18-JI16679	S18-JI16680
Date Sampled			Jul 13, 2018	Jul 13, 2018	Jul 13, 2018	Jul 13, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	< 2	-	20	< 2
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	< 0.4
Chromium	5	mg/kg	5.3	-	37	27
Copper	5	mg/kg	< 5	-	< 5	6.3
Lead	5	mg/kg	12	-	9.5	15
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	-	6.7	< 5
Zinc	5	mg/kg	< 5	-	38	15
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	6.8	6.8	6.1	6.9
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.5	6.0	6.0	7.1
Reaction Ratings*S05		comment	4.0	4.0	4.0	4.0
·						
% Moisture	1	%	12	-	20	21

Client Sample ID			GHD-BH3_7.5- 7.95	GHD-BH5_1.6- 2.05	GHD-BH5_2.8- 3.25	GHD-BH5_4.5- 4.95
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI16681	S18-JI16682	S18-JI16683	S18-JI16684
Date Sampled			Jul 13, 2018	Jul 11, 2018	Jul 11, 2018	Jul 11, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C6-C9	20	mg/kg	-	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	-	< 20	28	< 20
TRH C15-C28	50	mg/kg	-	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	-	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50	< 50	< 50
втех						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	-	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	79	59	70
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	-	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	-	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	-	< 100	< 100	< 100

Client Sample ID			GHD-BH3_7.5- 7.95	GHD-BH5_1.6- 2.05	GHD-BH5_2.8- 3.25	GHD-BH5_4.5- 4.95
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI16681	S18-JI16682	S18-JI16683	S18-JI16684
Date Sampled			Jul 13, 2018	Jul 11, 2018	Jul 11, 2018	Jul 11, 2018
Test/Reference	LOR	Unit	001 10, 2010	041 11, 2010	our 11, 2010	001 11, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Unit				
Benzo(a)pyrene TEQ (lower bound) *	0.5	ma/ka	-	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (nedium bound) *	0.5	mg/kg mg/kg		0.6	0.6	0.6
Benzo(a)pyrene TEQ (medium bound) *	0.5		-	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg mg/kg	-	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg		< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5		-	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5		-	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg		< 0.5	< 0.5	< 0.5
		mg/kg	-			
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	101	99	100
p-Terphenyl-d14 (surr.)	1	%	-	107	103	104
Organochlorine Pesticides	<u> </u>	1				
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	-
а-ВНС	0.05	mg/kg	-	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	-
Methoxychlor	0.2	mg/kg	-	< 0.2	< 0.2	-
Toxaphene	1	mg/kg	-	< 1	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	105	101	-
Tetrachloro-m-xylene (surr.)	1	%	-	108	103	-

Client Sample ID			GHD-BH3_7.5- 7.95	GHD-BH5_1.6- 2.05	GHD-BH5_2.8- 3.25	GHD-BH5_4.5- 4.95
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI16681	S18-JI16682	S18-JI16683	S18-JI16684
Date Sampled			Jul 13, 2018	Jul 11, 2018	Jul 11, 2018	Jul 11, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	·					
Aroclor-1016	0.5	mg/kg	-	< 0.5	< 0.5	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	< 0.1	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	< 0.5	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	< 0.5	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	< 0.5	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	< 0.5	=
Aroclor-1260	0.5	mg/kg	-	< 0.5	< 0.5	=
Total PCB*	0.5	mg/kg	-	< 0.5	< 0.5	=
Dibutylchlorendate (surr.)	1	%	-	105	101	=
Tetrachloro-m-xylene (surr.)	1	%	-	108	103	=
Heavy Metals						
Arsenic	2	mg/kg	-	< 2	8.4	5.8
Cadmium	0.4	mg/kg	-	1.0	< 0.4	< 0.4
Chromium	5	mg/kg	-	5.4	32	13
Copper	5	mg/kg	-	< 5	< 5	< 5
Lead	5	mg/kg	-	21	6.6	8.7
Mercury	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	-	< 5	< 5	< 5
Zinc	5	mg/kg	-	77	13	< 5
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	5.9	8.1	6.4	4.7
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.2	8.0	4.5	3.6
Reaction Ratings*S05		comment	2.0	4.0	2.0	2.0
% Moisture	1	%	-	18	18	17

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			GHD-BH5_6.0- 6.45 Soil S18-JI16685 Jul 11, 2018	GHD-BH5_7.5- 7.95 Soil S18-JI16686 Jul 11, 2018
Test/Reference	LOR	Unit		
Acid Sulfate Soils Field pH Test				
pH-F (Field pH test)*	0.1	pH Units	4.4	4.3
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	3.5	3.3
Reaction Ratings*S05		comment	2.0	1.0

Report Number: 607671-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Jul 16, 2018	Holding Time 14 Day
- Method: TRH C6-C36 - LTM-ORG-2010 BTEX - Method: TRH C6-C40 - LTM-ORG-2010	Sydney	Jul 16, 2018	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: TRH C6-C40 - LTM-ORG-2010	Sydney	Jul 16, 2018	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: TRH C6-C40 - LTM-ORG-2010	Sydney	Jul 16, 2018	14 Day
Polycyclic Aromatic Hydrocarbons - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water	Sydney	Jul 16, 2018	14 Days
Metals M8 - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Sydney	Jul 16, 2018	28 Day
Organochlorine Pesticides - Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Sydney	Jul 16, 2018	14 Day
Polychlorinated Biphenyls - Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Sydney	Jul 16, 2018	28 Days
Acid Sulfate Soils Field pH Test	Brisbane	Jul 19, 2018	7 Days
 Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests Moisture 	Sydney	Jul 16, 2018	14 Day

Report Number: 607671-S

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

607671

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Jul 13, 2018 8:37 PM

Jul 23, 2018 5 Day

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Phone: 02 9239 7100 **Fax:** 02 9239 7199

Order No.:

Report #:

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	HOLD	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271								
	ney Laboratory					Х		Х		Х	Х	Х
	bane Laboratory						Х		Х			
	h Laboratory - N		36									
	rnal Laboratory				1							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GHD- BH03_1.5-1.95	Jul 13, 2018		Soil	S18-JI16677	х			Х	Х	Х	х
2	GHD- BH03_2.9-3.35	Jul 13, 2018		Soil	S18-JI16678				Х			
3	GHD- BH3_4.5-4.95	Jul 13, 2018	_	Soil	S18-JI16679				Х	Х	Х	х
4	GHD- BH3_6.0-6.45	Jul 13, 2018		Soil	S18-JI16680				Х		Х	х
5	GHD- BH3_7.5-7.95	Jul 13, 2018		Soil	S18-JI16681				Х			
6	GHD-	Jul 11, 2018		Soil	S18-JI16682	Х			Х	Х	Х	Х

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 7 of 17

Date Reported:Jul 23, 2018

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

607671

02 9239 7100

02 9239 7199

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Received: Jul 13, 2018 8:37 PM **Due:** Jul 23, 2018

Priority: 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Mell	oourne Laborato		mple Detail # 1254 & 142	271		Asbestos - AS4964	HOLD	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
Syd	ney Laboratory	- NATA Site # 1	8217			Х		Х		Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794				Х		Х			
Pert	h Laboratory - N	NATA Site # 23	736									
	BH5_1.6-2.05											
7	GHD- BH5_2.8-3.25	Jul 11, 2018		Soil	S18-JI16683				Х	Х	Х	Х
8	GHD- BH5_4.5-4.95	Jul 11, 2018		Soil	S18-JI16684				х		х	х
9	GHD- BH5_6.0-6.45	Jul 11, 2018		Soil	S18-JI16685				Х			
10	GHD- BH5_7.5-7.95	Jul 11, 2018		Soil	S18-JI16686				Х			
11	RIN1	Jul 13, 2018		Water	S18-JI16687			Х				
12	TRIP1	Jul 11, 2018		Soil	S18-JI16688			Х				
13	BLANK1	Jul 11, 2018		Soil	S18-JI16689	<u> </u>		Х				
14	TRIP SPIKE LAB	Jul 11, 2018		Soil	S18-JI16690			Х				

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 9239 7100

02 9239 7199

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 Received:
 Jul 13, 2018 8:37 PM

 Report #:
 607671
 Due:
 Jul 23, 2018

 Due:
 Jul 23, 2018

 Priority:
 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sa	mple Detail			Asbestos - AS4964	HOLD	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
Melbourne Laborato	ory - NATA Site	# 1254 & 142	271								
Sydney Laboratory	- NATA Site # 1	8217			Х		Х		Х	Х	Х
Brisbane Laborator	y - NATA Site #	20794				Х		Х			
Perth Laboratory - N	NATA Site # 237	36									
15 GHD- BH5_9.0-9.15	Jul 11, 2018	_	Soil	S18-JI16691		х					
Test Counts					2	5	5	10	4	6	6

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 607671-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u> </u>	•	'		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Rg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluorene Fluorene	mg/kg	1			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
\	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank			· ·		
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242 Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254		< 0.5	0.5	Pass	
Aroclor-1254 Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
	mg/kg				
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank				T	
Heavy Metals	Τ ,			<u> </u>	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	,				
TRH C6-C9	%	95	70-130	Pass	
TRH C10-C14	%	79	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	89	70-130	Pass	
Toluene	%	96	70-130	Pass	
Ethylbenzene	%	96	70-130	Pass	
m&p-Xylenes	%	101	70-130	Pass	
o-Xylene	%	100	70-130	Pass	
Xylenes - Total	%	101	70-130	Pass	
LCS - % Recovery		·			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	121	70-130	Pass	
TRH C6-C10	%	96	70-130	Pass	
TRH >C10-C16	%	81	70-130	Pass	
LCS - % Recovery	, ,,	, , , , , , , , , , , , , , , , , , ,	10.100	, . 400	
Polycyclic Aromatic Hydrocarbons				I	
Acenaphthene	%	93	70-130	Pass	
Acenaphthylene	%	98	70-130	Pass	
	%	99	70-130	Pass	
Anthracene	1				
Benz(a)anthracene	%	99	70-130	Pass	
Benzo(a)pyrene	%	93	70-130	Pass	<u> </u>

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene			%	92		70-130	Pass	
Benzo(g.h.i)perylene			%	112		70-130	Pass	
Benzo(k)fluoranthene			%	89		70-130	Pass	
Chrysene			%	96		70-130	Pass	
Dibenz(a.h)anthracene			%	105		70-130	Pass	
Fluoranthene			%	101		70-130	Pass	
Fluorene			%	96		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	106		70-130	Pass	
Naphthalene			%	94		70-130	Pass	
Phenanthrene			%	96		70-130	Pass	
Pyrene			%	100		70-130	Pass	
LCS - % Recovery			70	100		70-130	1 033	
Organochlorine Pesticides								
4.4'-DDD			%	100		70.120	Door	
				102		70-130	Pass	
4.4'-DDE			%	102		70-130	Pass	
4.4'-DDT			%	91		70-130	Pass	
a-BHC			%	107		70-130	Pass	
Aldrin			%	105		70-130	Pass	
b-BHC			%	102		70-130	Pass	
d-BHC			%	102		70-130	Pass	
Dieldrin			%	102		70-130	Pass	
Endosulfan I			%	102		70-130	Pass	
Endosulfan II			%	100		70-130	Pass	
Endosulfan sulphate			%	97		70-130	Pass	
Endrin			%	99		70-130	Pass	
Endrin aldehyde			%	98		70-130	Pass	
Endrin ketone			%	97		70-130	Pass	
g-BHC (Lindane)			%	105		70-130	Pass	
Heptachlor			%	104		70-130	Pass	
Heptachlor epoxide			%	103		70-130	Pass	
Hexachlorobenzene			%	107		70-130	Pass	
Methoxychlor			%	85		70-130	Pass	
LCS - % Recovery								
Polychlorinated Biphenyls								
Aroclor-1260			%	86		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	108		70-130	Pass	
Cadmium			%	109		70-130	Pass	
Chromium			%	107		70-130	Pass	
Copper			%	110		70-130	Pass	
Lead			%	112		70-130	Pass	
				1				
Mercury			%	106		70-130	Pass	
Nickel			%	105		70-130	Pass	
Zinc			%	110		70-130	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S18-JI16081	NCP	%	105		70-130	Pass	
TRH C10-C14	S18-JI14018	NCP	%	82		70-130	Pass	
Spike - % Recovery					·			
-				Result 1				
BTEX				, recoult i			i	1
BTEX Benzene	S18-JI16081	NCP	%	91		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Ethylbenzene	S18-JI16081	NCP	%	95	70-130	Pass	
m&p-Xylenes	S18-JI16081	NCP	%	100	70-130	Pass	
o-Xylene	S18-JI16081	NCP	%	98	70-130	Pass	
Xylenes - Total	S18-JI16081	NCP	%	99	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
Naphthalene	S18-JI16081	NCP	%	117	70-130	Pass	
TRH C6-C10	S18-JI16081	NCP	%	112	70-130	Pass	
TRH >C10-C16	S18-JI14018	NCP	%	86	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarboi	ns			Result 1			
Acenaphthene	S18-JI14696	NCP	%	95	70-130	Pass	
Acenaphthylene	S18-JI14696	NCP	%	99	70-130	Pass	
Anthracene	S18-JI14696	NCP	%	99	70-130	Pass	
Benz(a)anthracene	S18-JI14696	NCP	%	103	70-130	Pass	
Benzo(a)pyrene	S18-JI14696	NCP	%	87	70-130	Pass	
Benzo(b&j)fluoranthene	S18-JI14696	NCP	%	88	70-130	Pass	
Benzo(g.h.i)perylene	S18-JI14696	NCP	%	106	70-130	Pass	
Benzo(k)fluoranthene	S18-JI14696	NCP	%	85	70-130	Pass	
Chrysene	S18-JI14696	NCP	%	97	70-130	Pass	
Dibenz(a.h)anthracene	S18-JI14696	NCP	%	99	70-130	Pass	
Fluoranthene	S18-JI14696	NCP	%	100	70-130	Pass	
Fluorene	S18-JI14696	NCP	%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-JI14696	NCP	%	101	70-130	Pass	
Naphthalene	S18-JI14696	NCP	%	96	70-130	Pass	
Phenanthrene	S18-JI14696	NCP	%	97	70-130	Pass	
Pyrene	S18-JI14696	NCP	%	99	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S18-JI21625	NCP	%	96	70-130	Pass	
4.4'-DDE	S18-JI21625	NCP	%	87	70-130	Pass	
4.4'-DDT	S18-JI21671	NCP	%	79	70-130	Pass	
a-BHC	S18-JI21625	NCP	%	82	70-130	Pass	
Aldrin	S18-JI21625	NCP	%	88	70-130	Pass	
b-BHC	S18-JI21625	NCP	%	80	70-130	Pass	
d-BHC	S18-JI21625	NCP	%	83	70-130	Pass	
Dieldrin	S18-JI21625	NCP	%	86	70-130	Pass	
Endosulfan I	S18-JI21625	NCP	%	82	70-130	Pass	
Endosulfan II	S18-JI21625	NCP	%	82	70-130	Pass	
Endosulfan sulphate	S18-JI21625	NCP	%	80	70-130	Pass	
Endrin	S18-JI21625	NCP	%	81	70-130	Pass	
Endrin aldehyde	S18-JI21625	NCP	%	74	70-130	Pass	
Endrin ketone	S18-JI21625	NCP	%	79	70-130	Pass	
g-BHC (Lindane)	S18-JI21625	NCP	%	82	70-130	Pass	
Heptachlor	S18-JI21625	NCP	%	88	70-130	Pass	
Heptachlor epoxide	S18-JI21625	NCP	%	86	70-130	Pass	
Hexachlorobenzene	S18-JI20060	NCP	%	102	70-130	Pass	
Methoxychlor	S18-JI21671	NCP	%	80	70-130	Pass	
Toxaphene	S18-JI19047	NCP	%	86	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	S18-Jl22584	NCP	%	101	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			

Report Number: 607671-S

Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	•	Source					Limits	Limits	Code
Arsenic	S18-JI17324	NCP	%	95			70-130	Pass	
Cadmium	S18-JI17324	NCP	%	97			70-130	Pass	
Chromium	S18-JI17324	NCP	%	98			70-130	Pass	
Copper	S18-JI17324	NCP	%	100			70-130	Pass	
Lead	S18-JI17324	NCP	%	100			70-130	Pass	
Mercury	S18-JI17324	NCP	%	97			70-130	Pass	
Nickel	S18-JI17324	NCP	%	96			70-130	Pass	
Zinc	S18-JI17324	NCP	%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				ı					
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD			
TRH C10-C14	S18-JI17314	NCP	mg/kg	25	24	<1	30%	Pass	
TRH C15-C28	S18-JI17314	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S18-JI17314	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				,					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S18-JI17314	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-JI17314	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S18-JI17314	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Acenaphthene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-JI14694	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate								1 2122	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-JI20057	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
. Enacoditati calbiiate	0100120001								
•	S18II20057	l NCP i	ma/ka	< 0.05	< 0.05	-1	311%		
Endrin Endrin aldehyde	S18-JI20057 S18-JI20057	NCP NCP	mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<u><1</u> <1	30%	Pass Pass	

Duplicate									
•				Describ 4	D	DDD	l		
Organochlorine Pesticides	040 1100057	NOD		Result 1	Result 2	RPD	000/	D	
g-BHC (Lindane)	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-JI20057	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-JI20057	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S18-JI20057	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate Delivebleringted Binhands				Result 1	Result 2	RPD			
Polychlorinated Biphenyls Aroclor-1016	S18-JI22583	NCP	m a/lea	< 0.5	< 0.5	<1	30%	Pass	
		NCP	mg/kg			<u><1</u>			
Aroclor 1221	S18-JI22583	NCP	mg/kg	< 0.1	< 0.1	<u><1</u> <1	30%	Pass	
Aroclor 1232	S18-JI22583	NCP	mg/kg	< 0.5	< 0.5	<u><1</u> <1	30%	Pass	
Aroclor-1242	S18-JI22583		mg/kg	< 0.5	< 0.5		30%	Pass	
Aroclor-1248	S18-JI22583	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Arcelor-1254	S18-JI22583	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S18-JI22583	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate User Matela				Describ 4	D	DDD			
Heavy Metals	C40 II47222	NOD		Result 1	Result 2	RPD	200/	Dana	
Arsenic	S18-JI17323	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-JI15899	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-JI17323	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S18-JI17323	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S18-JI17323	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S18-JI17323	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-JI17323	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S18-JI17323	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate				D 11.4		DDD	T	T	
Acid Sulfate Soils Field pH Test	040 1140000	00	1	Result 1	Result 2	RPD	000/	+	
pH-F (Field pH test)*	S18-JI16680	CP	pH Units	6.9	7.1	pass	30%	Pass	
Reaction Ratings*	S18-JI16680	CP	comment	4.0	4.0	pass	30%	Pass	
Duplicate				D. a. di 4	D 11 0	DDD	Ī	I	
0, 11 : .	040 1140000	00	T 0/	Result 1	Result 2	RPD	000/	+	
% Moisture	S18-JI16680	СР	%	21	21	1.0	30%	Pass	
Duplicate Total Recoverable Hydrocarbons -	1000 NEDM Fract	ione		Pocult 1	Result 2	RPD			
TRH C6-C9	S18-JI16682	CP	ma/ka	Result 1 < 20	< 20	<1	30%	Pass	
Duplicate	310-3110002	l CF	mg/kg	< 20	< 20	<1	30%	Fass	
BTEX				Result 1	Result 2	RPD			
Benzene	S18-JI16682	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-JI16682	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-JI16682	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-JI16682	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	S18-JI16682	CP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-JI16682	CP	mg/kg	< 0.3	< 0.1	<1	30%	Pass	
Duplicate	1 010 0110002	<u> </u>	, 111g/Ng		, 0.0		0070	1 433	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-JI16682	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-JI16682	CP	mg/kg	< 20	< 20	<u><1</u>	30%	Pass	
11/11/00-010	310-3110002	LOF	i iiig/kg	<u> </u>	< 20	<u> </u>	3070	F 455	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised By

N02

S05

Nibha Vaidya Analytical Services Manager Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 607671-S

eurofins	

mgt

7		
	/dr	

Sydney
Unit F3 - 6 Building F, 16 Mars Road, Lane Cove
Phone: +612 9900 8400

Email: enviro.syd@mgtlabmark.com.au

Π.	0	ris	ha	n
		115	υa	

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600

Email: enviro.bris@mqtlabmark.com.au

Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mqtlabmark.com.au

											C	;H/	AIN	OF	CU	ST	יםס	r R	EC	OR	RD		- E				2.5				
LIEN	T DETAILS																												age1_	_ of1_	
compa	any Name : GHD Pty Ltd			Con	tact N	Name :	Clifton	Thom	psoo	n						P	urchas	e Ord	r : 21	27425	5						COC Nun	iber: 3			
Office	Address :			Proj	ject M	lanager	: Just	in Kab	oat							P	ROJEC	T Nur	ber:	21274	425						Eurofins	mgt quot	te ID : 170	308GHDN	
L	evel 15, 133 Castlereagh Stree	t, Sydney NS	W 2000	Ema	ail for	results	: clifte	on.tho	mpsc	n@ghd	l.com					P	ROJEC	T Nan	ne : So	cotlan	nd Is	land Ener	gy Reliabi	lity Projec	t		Data out	out format:	Esdat, P)F	
												Analy	/tes											Sor			g times (wi			ion).	
pecia	al Directions & Comments :			40	(S)	П	Т	Т			1.2	П	T			Т		Т						Waters		7 1010101		0111001 010		oils	
				84964-2004	metals)						Aggressivity Suite (pH, EC trivity, S04)	(×)						1				BTEX.	MAH. VO	С		14 days	BTEX	, MAH, VO	C		14 days
pecia	al Directions & Comments :			496	8						F,	and pHfox)										TRH, F	PAH, Phen	ols, Pestic	ides	7 days		PAH, Phen		ehir	14 days
				-AS	Ž						9	a p										Heavy				6 months		Metals	1013, 1 63110	1063	6 months
	k bag samples frozen overnight Please freeze zip lock bags for			loo loo	I A						ij	a											ry, CrVI			28 days	110011	ry, CrVI			28 days
	. Thanks	possible lutur	e SPOCAS	pse	/B1	贸					≥ _	(pHf											iological te	estina		24 hours		biological te	natina		72 hours
				ce/a	A.	PCB			65		ok)	2												rite, Total I	V	2 days	Anion	_	sung		28 days
				sen	15	<u>a</u>			62-92		es.	ee											- TSS, TD			7 days		CAS, pH Fie	old and EC	Y Crs	24 hours
				ed)	(TRH/PAH/BTEXN/8	OCP			Ī		vity	Screen										Ferrou	_	0.00		7 days		, TCLP	na ana i	7, 010	
urofin	ns mgt DI water batch number:			9	B7 (B13	<u>0</u>		/ TPH		L2 A	Field										1 01100	0 11 011			r days	ASLP	TCLP			7 days
				estos	te B	e E	8 metals	X	BTEX	م	te L Re	Œ,			ΙI							Container	s:								Translation .
	Sample ID	Date	Matrix	Asbest	Suite	Suite	8	BTEX	BTI	TCLP	Suite CI, Re	표										1LP	250P	125P	1LA	40mL via	1 125mL A	Jar	bag	Sample	comments:
1	GHD-BH3_16_16.45	17/07/2018	soil									Х																	1		
2	GHD-BH3_17.5_17.77	17/07/2018	soil	-								Х																	1		
3	GHD-BH3 19 19.45	17/07/2018	soil	\vdash								Х					1												1		
4	GHD-BH3_22_22.45	17/07/2018	soil									Х																1	1		
5																															
6																															
7				1													- 1	1 5													
8																	-	5													
9																	4	dk													-
10						9								-1					A62 -												
11																															
12				Т	1	3.				1				_ "																	
13					1					1												1	-								
14										-4				4																	
15									12																						
16		- 3							1																	1.	1				
						Lal	borato	ry Stat	ff						Turr	arou	nd time								Method C	f Shipme	nt			Temperature	on arrival:
Relino	quished By: Clifton Thompson	1	Receiv	ved B	3y: /	ade	e.	6	,						Υ 🗆		DAY [1				□ c	ourier							5-2	26°C
Date 8	& Time : 18:00, 24/07/2018		Date 8	& Tim	24		1/18		7	35	My		Y 🗆				_	4					and Delive estal	red						Report numb	er:
Signa	ture:		Signa	ture:		1	1	5	_	-	V	5 DA	Y	10 D	AY L] 0	ther:					Courier C	onsignme	ent#:						600	1184

QS3009_R0

Issue Date: 25 February 2013

Page 1 of 1

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: **GHD Pty Ltd NSW**

Contact name: Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Jul 24, 2018 7:35 PM Date/Time received:

Eurofins | mgt reference: 609184

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 5.3 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Certificate of Analysis

lac MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson

Report 609184-S

Project name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Jul 24, 2018

Client Sample ID Sample Matrix			GHD-BH3_16- 16.45 Soil	GHD- BH3_17.5- 17.77 Soil	GHD-BH3_19- 19.45 Soil	GHD-BH3_22- 22.45 Soil
Eurofins mgt Sample No.			S18-JI28182	S18-JI28183	S18-JI28184	S18-JI28185
Date Sampled			Jul 17, 2018	Jul 17, 2018	Jul 17, 2018	Jul 17, 2018
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test	·	•				
pH-F (Field pH test)*	0.1	pH Units	5.9	5.4	5.2	5.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.3	2.6	2.8	1.6
Reaction Ratings*S05		comment	4.0	1.0	1.0	4.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAcid Sulfate Soils Field pH TestBrisbaneJul 26, 20187 Days

- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests

Report Number: 609184-S

Acid Sulfate Soils Field

pH Test

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 9239 7100

02 9239 7199

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425
 Received:
 Jul 24, 2018 7:35 PM

 Report #:
 609184
 Due:
 Aug 1, 2018

Priority: 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail

Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794 X Perth Laboratory - NATA Site # 23736

External Laboratory

	iliai Eaboratory					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
1	GHD-BH3_16- 16.45	Jul 17, 2018		Soil	S18-Jl28182	х
2	GHD- BH3_17.5- 17.77	Jul 17, 2018		Soil	S18-Jl28183	Х
3	GHD-BH3_19- 19.45	Jul 17, 2018		Soil	S18-JI28184	х
4	GHD-BH3_22- 22.45	Jul 17, 2018		Soil	S18-JI28185	Х
Test	Counts					4

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 3 of 6

Report Number: 609184-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	S18-Jl28182	CP	pH Units	5.9	5.9	pass	30%	Pass	
Reaction Ratings*	S18-Jl28182	CP	comment	4.0	4.0	pass	30%	Pass	

Report Number: 609184-S

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction. S05

Authorised By

Nibha Vaidya Analytical Services Manager

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 609184-S

8.5		-		9
	eu	rot	1	ns

mgt

/	SI	hv	ne
-	-	γu	

Sydney
Unit F3 - 6 Building F, 16 Mars Road, Lane Cove
Phone: +612 9900 8400

Email: enviro.syd@mgtlabmark.com.au

	:	_	L	_	-	
н	rı	9	п	-	п	£

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtlabmark.com.au

_			-			
		_	-	-		rne
	IVI		n	O	ш	FILE

Z Kingston Town Close, Oakleigh, VIC 3166
Phone: +613 8564 5000 Fax: +613 8564 5090
Email: enquiries.melb@mgtlabmark.com.au

											C	HA	IN C	OF C	cus	TOE	Y R	EC	ORI)										
CLIEN	T DETAILS																									Pa	ige1_	of1_		
Compa	any Name : GHD Pty Ltd			Cont	act Na	ame : C	lifton	Thom	psoor	n						Purch	ase Ord	ler : 21	27425						COC Num	ber:1				
Office	Address :			Proje	ect Ma	anager :	: Justin	n Kab	at							PROJ	ECT Nu	mber :	212742	5					Eurofins	mgt quot	e ID: 1708	08GHDN		
L	evel 15, 133 Castlereagh Stree	t, Sydney NSV	V 2000	Emai	il for r	results	: clifto	n.tho	mpso	n@ghd.	.com					PROJ	ECT Na	me : S	cotland	Island Ene	rgy Reliab	gy Reliability Project Data output format: Esdat,					Esdat, PD	, PDF		
_					_			_	_			Analyt	tes		_	_				T		So	me comm	on holding	times (wit formation c	th correct	preservati	on).		
Specia	al Directions & Comments :			40	(s)		_					Ť		ТТ		П		П				Waters		or turtifier in	Tormation c	Ontact the	So	ils		
				4-2004	metals)						EC,	$\widehat{\mathbf{x}}$		11						BTEX	MAH, VC			14 days	BTEV	MAH, VO			14 days	
Specia	I Directions & Comments :			496							Ä,	pHfox)				1 1		1 1		-		nols, Pestic	ides	7 days		PAH, Phen		ides	14 days	
				-AS	Ž						Suite (pH,	d p								Heavy	Metals			6 months		Metals	0.01 1 00.00		6 months	
Zip lock bag samples frozen overnight and been on ice all of times. Please freeze zip lock bags for possible future SPOC			ip lock bag samples frozen overnight and been on ice all other								Suit	and				1 1				Mercu	ry, CrVI			28 days	-	ry, CrVI			28 days	
	. Thanks	possible fatore	0.00.00	apse	₩	PCB	10				£ _	(pHf				1 1		1 1		Micro	biological t	esting		24 hours		piological te	sting		72 hours	
				ce/s	A	P.			62-92		sivi 304	- L				1 1		Ш		BOD,	Nitrate, N	itrite, Total	N	2 days	Anions				28 days	
			79.00	sen	불	OCP/	1		8		y, S	Screen				1 1				Solids	- TSS, TI	OS etc		7 days	SPOC	AS, pH Fie	eld and FO	X, CrS	24 hours	
	i i a de Riamata de de la comptanta			(pre	B7 (TRH/PAH/BTEXN/8	00			TPH		2 Aggressivity (stivity, S04)	Sc								Ferro	us iron			7 days		TCLP			7 days	
uroiin	s mgt Di water batch number:			Ol so:	B7	B13	tals		_		L'S	Field			-1															
	Sample ID	Date	Matrix	Asbest	Suite	Suite	8 metals	BTEX	BTEX	TCLP	Suite CI, Re	- Hd								Containe 1LP	rs: 250P	125P	1LA	40mL vial	125mL A	Jar	bag	Sample of	omments:	
1	GHD-BH3 9.0 9.45	17/07/2018	soil	4	0)	0)	- 8	ш	Ш		0,0	X	+			\vdash	+		\perp	101	2001	1201	101	40IIIE VIGI	120me A	Octi	1			
2					\neg				\Box			X	\neg					\Box									1			
3			soil		\vdash							X		\top		T	\top	\Box			-						1			
4		17/07/2018	soil				+					Х		\top		\Box	\top	\Box	\neg								1			
5	GHD-BH2 1.9 2.35	23/07/2018	soil	Х	Х	Х						Х														1	1			
6	GHD-BH2 3.5 3.95	23/07/2018	soil		Х	Х						Х														1	1			
7	GHD-BH2 5 5.45	23/07/2018	soil									Х														1	1			
8	GHD-BH2 8 8.45	23/07/2018	soil									Х														1	1			
9	GHD-BH2_11.0	23/07/2018	soil		Х							Х														1	1			
10	GHD-BH2_11_11.23	23/07/2018	soil									Х														1	1			
11	GHD-BH2_14_14.45	23/07/2018	soil									Х														1	1			
12	Dup01	23/07/2018	soil		Х	X																								
13	Dup02	23/07/2018	soil		Х	X																								
14																														
15																														
16																														
						Labo	oratory	Staff	£						Turn ar	ound ti	me						Method C	f Shipmer	nt			Temperature	on arrival:	
Relinq	uished By: Clifton Thompsor	1	Receiv	ed By	" (14	di		9					24.0						□ c	ourier							7.4	3°C	
Date &	k Time : 18:00, 23/07/2018 & 1	8:00 19/07/20	18 Date &	Time	j. J.	5a	n		1	25	/7.	1 DAY		2 DAY		3 DAY					and Deliv	ered						Report number		
1 GHD-BH3_9.0_9.45 17/07/2018 soil 2 GHD-BH3_10.5_10.6 17/07/2018 soil 3 GHD-BH3_15_15.45 17/07/2018 soil 4 GHD-BH3_18_18.2 17/07/2018 soil 5 GHD-BH2_1.9_2.35 23/07/2018 soil 6 GHD-BH2_3.5_3.95 23/07/2018 soil 7 GHD-BH2_5_5.45 23/07/2018 soil 8 GHD-BH2_8_8.45 23/07/2018 soil 9 GHD-BH2_11.0 23/07/2018 soil 10 GHD-BH2_11_11.23 23/07/2018 soil 11 GHD-BH2_11_11.23 23/07/2018 soil 12 Dup01 23/07/2018 soil 13 Dup02 23/07/2018 soil 14 15 16 Relinquished By: Clifton Thompson Reco		Signati	ure:			_	_			5	DAY		10 DA		Other:				Courier (Consignm	ent#:						6092	40		

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

GHD Pty Ltd NSW Company name:

Contact name: Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Jul 25, 2018 11:15 AM Date/Time received:

Eurofins | mgt reference: 609240

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 7.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- **7** Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

GHD_BH2_11.0 not received; analysis cancelled. GHD_BH3_9.0-9.45, GHD_BH3_10.5-10.6, GHD BH3 15-15.45 & GHD BH3 18-18.2 not frozen as received in Asbestos bags without prior instructions. Additional sample GHD_BH2_10.60-10.75(Unfrozen Asbestos bag) placed on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Certificate of Analysis

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson Report 609240-AID

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

 Project ID
 2127425

 Received Date
 Jul 25, 2018

 Date Reported
 Aug 01, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

 Project ID
 2127425

 Date Sampled
 Jul 23, 2018

 Report
 609240-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
GHD_BH2_1.9-2.35	18-Jl28506	Jul 23, 2018	Sample consisted of: Light grey fine grain soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 2 of 8

Sample History

Date Reported: Aug 01, 2018

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJul 25, 2018Indefinite

Page 3 of 8

Report Number: 609240-AID

Order No.:

Report #:

Phone:

Fax:

Melbourne
3-5 Kingston Town Cl

2127425

02 9239 7100

02 9239 7199

609240

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jul 25, 2018 11:15 AM

Aug 1, 2018

Clifton Thompson

5 Day

Company Name: GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name:

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

7 2000

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	CANCELLED	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
	ourne Laborato			271		Х	Х			Х	Х	Х
	ney Laboratory obane Laboratory					^	^	Х	Х	^	^	^
	h Laboratory - N											
	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GHD_BH3_9.0 -9.45	Jul 17, 2018		Soil	S18-JI28502				Х			
2	GHD_BH3_10. 5-10.6	Jul 17, 2018		Soil	S18-JI28503				Х			
3	GHD_BH3_15- 15.45	Jul 17, 2018		Soil	S18-JI28504				Х			
4	GHD_BH3_18- 18.2	Jul 17, 2018		Soil	S18-JI28505				Х			
5	GHD_BH2_1.9 -2.35	Jul 23, 2018		Soil	S18-JI28506	х			Х	Х	Х	х
6	GHD_BH2_3.5	Jul 23, 2018		Soil	S18-Jl28507				Х	Х	Х	х

Page 4 of 8

Order No.:

Report #:

Phone:

Fax:

Melbourne

2127425

02 9239 7100

02 9239 7199

609240

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

Received:

Priority:

Contact Name:

Due:

16 Mars Road

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jul 25, 2018 11:15 AM

Aug 1, 2018

Clifton Thompson

5 Day

Company Name: GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: Project ID:

2127425

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	CANCELLED	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
	bourne Laborato	_		271						X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	ney Laboratory bane Laboratory					Х	Х	Х	Х	_ ^	Х	Х
	h Laboratory - N											
	-3.95											
7	GHD_BH2_11. 0	Jul 23, 2018		Soil	S18-Jl28508		Х					
8	DUP01	Jul 23, 2018		Soil	S18-JI28509					Х	Х	Х
9	DUP02	Jul 23, 2018		Soil	S18-Jl28510					Х	Х	Х
10	GHD_BH2_5- 5.45	Jul 23, 2018		Soil	S18-JI28511				Х			
11	GHD_BH2_8- 8.45	Jul 23, 2018		Soil	S18-JI28512				х			
12	GHD_BH2_11- 11.23	Jul 23, 2018		Soil	S18-Jl28513				Х			
13	GHD_BH2_14- 14.45	Jul 23, 2018		Soil	S18-Jl28514				Х			
14	GHD_BH3_10.	Jul 16, 2018		Soil	S18-Jl28546			Х				

Page 5 of 8

Address:

Project Name:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au **Melbourne** 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Brisbane
Unit F3, Building F 1/21 Small

16 Mars Road

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

 Company Name:
 GHD Pty Ltd NSW
 Order No.:
 2127425
 Received:
 Jul 25, 2018 11:15 AM

 Level 15, 133 Castlereagh Street
 Report #:
 609240
 Due:
 Aug 1, 2018

 Sydney
 Phone:
 02 9239 7100
 Priority:
 5 Day

NSW 2000 Fax: 02 9239 7199 Contact Name: Clifton Thompson

Now 2000 Tax. 02 0200 7100 Contact Name. Contact Name.

Project ID: 2127425

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail	Asbestos - AS4964	CANCELLED	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	
Melbourne Laboratory - NATA Site # 1254 & 14271								
Sydney Laboratory - NATA Site # 18217	Х	Х			Х	Х	Х	
Brisbane Laboratory - NATA Site # 20794			Х	Х				
Perth Laboratory - NATA Site # 23736								
60-10.75								
Test Counts	1	1	1	10	4	4	4	

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Aug 01, 2018

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 609240-AID

Comments

The sample received was not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-sample to be analysed accurately represented the sample received.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

Date Reported: Aug 01, 2018

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

Page 8 of 8

Report Number: 609240-AID

⁻ Indicates Not Requested

 $^{^{\}star}$ Indicates NATA accreditation does not cover the performance of this service

Certificate of Analysis

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Clifton Thompson

Report 609240-S

Project name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Jul 25, 2018

Client Sample ID			GHD_BH3_9.0- 9.45	5-10.6	GHD_BH3_15- 15.45	GHD_BH3_18- 18.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI28502	S18-JI28503	S18-JI28504	S18-JI28505
Date Sampled			Jul 17, 2018	Jul 17, 2018	Jul 17, 2018	Jul 17, 2018
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	6.8	6.2	7.2	7.4
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.4	3.1	4.5	2.6
Reaction Ratings*S05		comment	1.0	1.0	1.0	1.0

Client Sample ID			GHD_BH2_1.9- 2.35	GHD_BH2_3.5- 3.95	DUP01	DUP02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI28506	S18-JI28507	S18-JI28509	S18-JI28510
Date Sampled			Jul 23, 2018	Jul 23, 2018	Jul 23, 2018	Jul 23, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	91	79	72	68
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			GHD_BH2_1.9- 2.35	GHD_BH2_3.5- 3.95	DUP01	DUP02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI28506	S18-JI28507	S18-JI28509	S18-JI28510
Date Sampled			Jul 23, 2018	Jul 23, 2018	Jul 23, 2018	Jul 23, 2018
Test/Reference	LOR	Unit	, , ,	,	, , ,	,
Polycyclic Aromatic Hydrocarbons	LOIX	Onit				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	133	95	105	83
p-Terphenyl-d14 (surr.)	1	%	123	86	93	83
Organochlorine Pesticides		,,,				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
o-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	83	86	86	80
Tetrachloro-m-xylene (surr.)	1	%	83	90	96	89

Report Number: 609240-S

Client Sample ID			GHD_BH2_1.9-	GHD_BH2_3.5-	DUDO4	DUP02
•			2.35 Soil	3.95 Soil	DUP01 Soil	Soil
Sample Matrix						1
Eurofins mgt Sample No.			S18-JI28506	S18-JI28507	S18-JI28509	S18-JI28510
Date Sampled			Jul 23, 2018	Jul 23, 2018	Jul 23, 2018	Jul 23, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	83	86	86	80
Tetrachloro-m-xylene (surr.)	1	%	83	90	96	89
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	5.5	6.2	6.1
Copper	5	mg/kg	< 5	< 5	< 5	< 5
Lead	5	mg/kg	< 5	< 5	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	< 5	< 5	< 5	< 5
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	7.0	5.1	-	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.6	4.4	-	-
Reaction Ratings*S05		comment	1.0	1.0	-	-
% Moisture	1	%	13	14	12	16

Client Sample ID			GHD_BH2_5- 5.45	GHD_BH2_8- 8.45	GHD_BH2_11- 11.23	GHD_BH2_14- 14.45
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-JI28511	S18-JI28512	S18-JI28513	S18-JI28514
Date Sampled			Jul 23, 2018	Jul 23, 2018	Jul 23, 2018	Jul 23, 2018
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	5.1	6.3	5.4	5.2
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.3	4.8	4.2	1.6
Reaction Ratings*S05		comment	1.0	1.0	1.0	4.0

Report Number: 609240-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Jul 27, 2018	Holding Time 14 Day
- Method: TRH C6-C36 - LTM-ORG-2010	Cy a.r.cy	00. 2. , 20.0	2 4,
BTEX	Sydney	Jul 27, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010	, ,		•
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 27, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 27, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 27, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Jul 27, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Jul 27, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Jul 27, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Acid Sulfate Soils Field pH Test	Brisbane	Jul 26, 2018	7 Days
- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
% Moisture	Sydney	Jul 25, 2018	14 Day

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT **Project Name:**

Project ID: 2127425 Order No.: 2127425 Received: Jul 25, 2018 11:15 AM Report #: 609240 Due: Aug 1, 2018

Phone: 02 9239 7100 Priority: 5 Day 02 9239 7199 **Contact Name:** Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Asbestos - AS4964	CANCELLED	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
	ourne Laborato		Х	Х			Х	Х	X			
	ney Laboratory bane Laboratory					^	^	Х	Х	^	^	^
	h Laboratory - N											
	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GHD_BH3_9.0 -9.45	Jul 17, 2018		Soil	S18-JI28502				Χ			
2	GHD_BH3_10. 5-10.6	Jul 17, 2018		Soil	S18-JI28503				Х			
3									Х			
4	4 GHD_BH3_18- Jul 17, 2018 Soil S18-Jl28505								Х			
5	5 GHD_BH2_1.9 Jul 23, 2018 Soil S18-JI28506								Х	Х	х	Х
6	GHD_BH2_3.5	Jul 23, 2018		Soil	S18-JI28507				Х	Х	х	Х

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 5 of 15

Date Reported:Aug 01, 2018

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 9239 7199

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425
 Received:
 Jul 25, 2018 11:15 AM

 Report #:
 609240
 Due:
 Aug 1, 2018

 Phone:
 02 9239 7100
 Priority:
 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Asbestos - AS4964	CANCELLED	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7				
Mel	bourne Laborato	ory - NATA Site	# 1254 & 142	271								
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х			Х	Х	Х
	bane Laboratory	•						Х	Х			
Pert	th Laboratory - N	IATA Site # 237	736	1								
	-3.95											
7	GHD_BH2_11. 0	Jul 23, 2018		Soil	S18-Jl28508		Х					
8	DUP01	Jul 23, 2018		Soil	S18-JI28509					Х	Х	Х
9	DUP02	Jul 23, 2018		Soil	S18-Jl28510					Х	Х	Х
10	GHD_BH2_5- 5.45	Jul 23, 2018		Soil	S18-Jl28511				Х			
11	GHD_BH2_8- 8.45	Jul 23, 2018		Soil	S18-Jl28512				Х			
12	GHD_BH2_11- 11.23	Jul 23, 2018		Soil	S18-Jl28513				Х			
13	GHD_BH2_14- 14.45	Jul 23, 2018		Soil	S18-Jl28514				Х			
14	GHD_BH3_10.	Jul 16, 2018		Soil	S18-Jl28546			Х				

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Jul 25, 2018 11:15 AM

Aug 1, 2018

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425

 Report #:
 609240

 Phone:
 02 9239 7100

 Fax:
 02 9239 7199

Priority: 5 Day
Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Eurofir

Eurofir

Acid S

Acid S

Sample Detail	stos - AS4964	SELLED		Sulfate Soils Field pH Test	ns mgt Suite B13	ure Set	ns mgt Suite B7
Melbourne Laboratory - NATA Site # 1254 & 14271							
Sydney Laboratory - NATA Site # 18217	Х	Х			Х	Х	Х
Brisbane Laboratory - NATA Site # 20794			Х	Х			
Perth Laboratory - NATA Site # 23736							
60-10.75							
Test Counts	1	1	1	10	4	4	4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u> </u>	•	'		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Rg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluorene Fluorene	mg/kg	1			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
\	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	<1	1	Pass	
Method Blank				1 400	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.5	Pass	
Arcelor 1242	mg/kg	< 0.5	0.5	Pass	
Arcelor 1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank		T T	T		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ions				
TRH C6-C9	%	96	70-130	Pass	
TRH C10-C14	%	79	70-130	Pass	
LCS - % Recovery	70	10	70 100	1 400	
BTEX					
Benzene	%	96	70-130	Pass	
Toluene	%	103	70-130	Pass	
	%	100	70-130		
Ethylbenzene		104		Pass	
m&p-Xylenes	%		70-130	Pass	
o-Xylene	%	102	70-130	Pass	
Xylenes - Total	%	103	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fract				_	
Naphthalene	%	98	70-130	Pass	
TRH C6-C10	%	94	70-130	Pass	
TRH >C10-C16	%	85	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons	1				
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	88	70-130	Pass	
Anthracene	%	79	70-130	Pass	
Benz(a)anthracene	%	86	70-130	Pass	
Benzo(a)pyrene	%	86	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene			%	83		70-130	Pass	
Benzo(g.h.i)perylene			%	86		70-130	Pass	
Benzo(k)fluoranthene			%	84		70-130	Pass	
Chrysene			%	88		70-130	Pass	
Dibenz(a.h)anthracene			%	90		70-130	Pass	
Fluoranthene			%	74		70-130	Pass	
Fluorene			%	88		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	91		70-130	Pass	
Naphthalene			%	86		70-130	Pass	
Phenanthrene			%	77		70-130	Pass	
Pyrene			%	77		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
4.4'-DDD			%	91		70-130	Pass	
4.4'-DDE			%	89		70-130	Pass	
4.4'-DDT			%	86		70-130	Pass	
a-BHC			%	91		70-130	Pass	
Aldrin			%	90		70-130	Pass	
b-BHC			%	88		70-130	Pass	
d-BHC			%	90		70-130	Pass	
Dieldrin			%	89		70-130	Pass	
Endosulfan I			%	89		70-130	Pass	
Endosulfan II			%	90		70-130	Pass	
Endosulfan sulphate			%	90		70-130	Pass	
Endrin			%	95		70-130	Pass	
Endrin aldehyde			%	86		70-130	Pass	
Endrin ketone			%	87		70-130	Pass	
g-BHC (Lindane)			%	91		70-130	Pass	
Heptachlor			%	91		70-130	Pass	
Heptachlor epoxide			%	89		70-130	Pass	
Hexachlorobenzene			%	92		70-130	Pass	
Methoxychlor			%	85		70-130	Pass	
LCS - % Recovery			,,,			70.00		
Polychlorinated Biphenyls								
Aroclor-1260			%	85		70-130	Pass	
LCS - % Recovery			,,,			70.00		
Heavy Metals								
Arsenic			%	115		70-130	Pass	
Cadmium			%	108		70-130	Pass	
Chromium			%	117		70-130	Pass	
Copper			%	115		70-130	Pass	
Lead			%	116		70-130	Pass	
Mercury			%	105		70-130	Pass	
Nickel			%	115		70-130	Pass	
Zinc			%	117		70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1		Acceptance	Pass	Qualifying
Spike - % Recovery		Source				Limits	Limits	Code
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1				
•	S18-Jl30022	NCP	%	82		70-130	Pass	
TRH C6-C9				80			Pass	
TRH C6-C9 TRH C10-C14	S18-JI33205	NCP	%	60	l	70-130	Газэ	
TRH C10-C14	S18-Jl33205	NCP	<u>%</u>			70-130	F 455	
	S18-Jl33205	NCP	%	Result 1		70-130	rass	
TRH C10-C14 Spike - % Recovery	S18-JI33205 S18-JI30022	NCP	%			70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	4	Acceptance Limits	Pass Limits	Qualifying Code
Ethylbenzene	S18-JI30022	NCP	%	90		70-130	Pass	
m&p-Xylenes	S18-JI30022	NCP	%	93		70-130	Pass	
o-Xylene	S18-JI30022	NCP	%	93		70-130	Pass	
Xylenes - Total	S18-JI30022	NCP	%	93		70-130	Pass	
Spike - % Recovery					· · · · · ·			
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
Naphthalene	S18-Jl30022	NCP	%	80		70-130	Pass	
TRH C6-C10	S18-JI30022	NCP	%	80		70-130	Pass	
TRH >C10-C16	S18-JI33205	NCP	%	78		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
4.4'-DDD	S18-JI31124	NCP	%	113		70-130	Pass	
4.4'-DDE	S18-Jl31124	NCP	%	108		70-130	Pass	
4.4'-DDT	S18-JI31124	NCP	%	99		70-130	Pass	
a-BHC	S18-JI31124	NCP	%	107		70-130	Pass	
Aldrin	S18-JI31124	NCP	%	107		70-130	Pass	
b-BHC	S18-JI31124	NCP	%	105		70-130	Pass	
d-BHC	S18-JI31124	NCP	%	107		70-130	Pass	
Dieldrin	S18-JI31124	NCP	%	109		70-130	Pass	
Endosulfan I	S18-JI31124	NCP	%	107		70-130	Pass	
Endosulfan II	S18-JI31124	NCP	%	108		70-130	Pass	
Endosulfan sulphate	S18-JI31124	NCP	%	108		70-130	Pass	
Endrin	S18-JI31124	NCP	%	113		70-130	Pass	
Endrin aldehyde	S18-JI31124	NCP	%	99		70-130	Pass	
Endrin ketone	S18-JI31124	NCP	%	106		70-130	Pass	
g-BHC (Lindane)	S18-JI31124	NCP	%	107		70-130	Pass	
Heptachlor	S18-JI31124	NCP	%	106		70-130	Pass	
Heptachlor epoxide	S18-JI31124	NCP	%	107		70-130	Pass	
Hexachlorobenzene	S18-JI31124	NCP	%	109		70-130	Pass	
Methoxychlor	S18-JI31124	NCP	%	97		70-130	Pass	
Spike - % Recovery	1 0.0 0.0		,,,	, J.		10 100		
Polychlorinated Biphenyls				Result 1				
Aroclor-1260	S18-Jl31124	NCP	%	98		70-130	Pass	
Spike - % Recovery			,,,	10		10 100	7 3.00	
Polycyclic Aromatic Hydrocarbo	ns			Result 1				
Acenaphthene	S18-Jl28507	СР	%	112		70-130	Pass	
Acenaphthylene	S18-JI28507	CP	%	113		70-130	Pass	
Anthracene	S18-JI28507	CP	%	102		70-130	Pass	
Benz(a)anthracene	S18-Jl28507	СР	%	114		70-130	Pass	
Benzo(a)pyrene	S18-JI28507	CP	%	112		70-130	Pass	
Benzo(b&j)fluoranthene	S18-JI28507	CP	%	107		70-130	Pass	
Benzo(g.h.i)perylene	S18-JI28507	CP	%	102		70-130	Pass	
Benzo(k)fluoranthene	S18-JI28507	CP	%	111		70-130	Pass	
Chrysene	S18-JI28507	CP	%	115		70-130	Pass	
Dibenz(a.h)anthracene	S18-JI28507	CP	%	110		70-130	Pass	
Fluoranthene	S18-JI28507	CP	%	99		70-130	Pass	
Fluorene	S18-JI28507	CP	%	114		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-JI28507	CP	%	110		70-130	Pass	
Naphthalene	S18-JI28507	CP	%	111		70-130	Pass	
Phenanthrene	S18-JI28507	CP	%	101		70-130	Pass	
Pyrene	S18-JI28507	CP	%	102		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S18-Jl28507	СР	%	93		70-130	Pass	

							,		
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Cadmium	S18-Jl28507	CP	%	93			70-130	Pass	
Chromium	S18-Jl28507	CP	%	96			70-130	Pass	
Copper	S18-Jl28507	CP	%	93			70-130	Pass	
Lead	S18-Jl28507	CP	%	94			70-130	Pass	
Mercury	S18-Jl28507	CP	%	91			70-130	Pass	
Nickel	S18-Jl28507	СР	%	95			70-130	Pass	
Zinc	S18-Jl28507	СР	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		Oource					Limits	Lillito	Oode
Total Recoverable Hydrocarbor	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-Jl28506	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-Jl28506	CP	mg/kg	< 20	30	<1	30%	Pass	
TRH C15-C28	S18-JI28506	СР	mg/kg	< 50	70	<1	30%	Pass	
TRH C29-C36	S18-JI28506	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S18-Jl28506	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-JI28506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-JI28506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-JI28506	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-JI28506	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-JI28506	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	310-3120300	Ci	IIIg/kg	\ 0.5	V 0.5		3078	1 033	
	2012 NEDM Eroot	ione		Popult 1	Popult 2	RPD	T		
Total Recoverable Hydrocarbor				Result 1	Result 2		200/	Dana	
Naphthalene	S18-JI28506	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-JI28506	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S18-JI33147		mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-JI28506	CP	mg/kg	< 100	110	<1	30%	Pass	
TRH >C34-C40	S18-Jl28506	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				D 11.4	D # 0	DDD	T		
Polycyclic Aromatic Hydrocarb			,,	Result 1	Result 2	RPD	0001		
Acenaphthene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-JI28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-JI28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-Jl28506	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Jl31123	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Aldrin	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-JI31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Jl31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Jl31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Jl31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Jl31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Jl31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Jl31123	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Jl31123	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S18-Jl31123	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Jl31123	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S18-Jl31123	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Jl31123	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S18-Jl31123	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S18-Jl31123	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S18-Jl31123	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S18-Jl31123	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals		,		Result 1	Result 2	RPD			
Arsenic	S18-Jl30212	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-Jl30212	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Jl30212	NCP	mg/kg	6.0	6.0	<1	30%	Pass	
Copper	S18-Jl30212	NCP	mg/kg	5.5	5.6	2.0	30%	Pass	
Lead	S18-Jl30212	NCP	mg/kg	6.8	7.2	6.0	30%	Pass	
Mercury	S18-Jl30212	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Jl30212	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S18-JI30212	NCP	mg/kg	26	28	8.0	30%	Pass	
Duplicate									
	1	1		Result 1	Result 2	RPD			
% Moisture	S18-JI28506	CP	%	13	14	3.0	30%	Pass	
Duplicate					1				
Acid Sulfate Soils Field pH Test	1	1	1	Result 1	Result 2	RPD			
pH-F (Field pH test)*	S18-Jl28511	CP	pH Units	5.1	5.2	pass	30%	Pass	
Reaction Ratings*	S18-Jl28511	CP	comment	1.0	1.0	pass	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction. S05

Authorised By

N02

Nibha Vaidya Analytical Services Manager Senior Analyst-Asbestos (NSW) Nibha Vaidya

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400

Email: enviro.syd@mgtlabmark.com.au

	_	_:	_	ᆫ	_	-	
	ь.	rı	s	п	7	n	в

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtlabmark.com.au Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email; enquiries.melb@mgtlabmark.com.au

											C) H/2	NN.	OF	CUS	$\mathfrak{I}^{\mathfrak{C}}$)DY	RE	CO	RE	כ										
CLIENT	T DETAILS									****																		Pa	ige1_	_ of1	
Compa	my Name : GHD Pty Ltd			Con	tact I	Name :	Clifton	Thon	npsoc	n						Pu	rchase	Order	: 21274	425							COC Num	ber : 4			
Office	Address :			Proj	ect M	lanagei	: Justi	in Kal	bat						"	PR	OJECT	Numb	er : 21	2742	5						Eurofins	mgt quot	e ID : 170	308GHDN	
L	evel 15, 133 Castlereagh Stree	t, Sydney NS	W 2000	Ema	ail for	results	: clifte	on.the	mpsc	on@gh	d.com					PR	OJECT	Name	: Scot	land	İsland	Energy	Reliabi	lity Projec	:t		Data output format: Esdat, PDF				
				 					**********	••••		Analy	tes								T			Sor			g times (with correct preservation nformation contact the lab			ion).	
Specia	Directions & Comments :			40	s)			1		П							T			Т	+			Waters		or turation in	TO: MICHOLIC O	ontact the		ils	
				4964-2004	etal						EC	(×									В	TEX, N	IAH, VO	c		14 days	BTEX	, MAH, VO			14 days
Special	Directions & Comments :			S496	/8 m						Suite (pH, EC	pHfox)							-		T	RH, PA	H, Phen	ols, Pestic	ides	7 days	 	PAH, Phen		ides	14 days
7in (1	k bag samples frozen overnight	and boon on	ing all other	4-(a	Z			İ			a	and p							1		Н	eavy N	letais			6 months	Heavy	Metals			6 months
	Please freeze zip lock bags for			ence	世						Sui	far									М	ercury	CrVI			28 days	Mercu	ry, CrVI			28 days
testing.	Thanks			(presence/absence)-	1 4	PCB						Screen (pHf	1								М	icrobio	logical te	sting		24 hours	Microb	oiological te	sting		72 hours
				/eor	Įξ	A			60-90		ssiv S04	5									В	OD, Ni	trate, Nit	rite, Total I	N	2 days	Anions	s			28 days
				esei	臣	0CP /		1	8		S S	ě									S	olids -	TSS, TD	S etc		7 days	SPOC	AS, pH Fie	ld and FO	X, CrS	24 hours
Eurofins	s mgt DI water batch number:			[bi.	B7 (TRH/PAH/BTEXN/8 metals)	30			TPH		Aggressivity stivity. S04)	101									F	errous	iron			7 days	ASLP	, TCLP			7 days
1	13			tos l	B7	B13	tals	$ _{\times}$	×		s L2 Resis	Field									Cont	ainers						<u> </u>			
	Sample ID	Date	Matrix	Asbestos	Suite	Suite	8 metals	BTEX	BTEX /	TCLP	Suite L2 Cl. Resis	Ha									1L	-,	250P	125P	1LA	40mL vial	125mL A	Jar	bag	- Sample co	mments:
1	GHD-BH4 1.5 1.95	30/07/2018	soil	Ť				+=				х								1								1			
2	GHD-BH4 3.0 3.45	30/07/2018	soil	1	T			_			_	х				一	\top											1	1		
3	GHD-BH4 4.5 4.95	30/07/2018	şoil	1	 				1		_	х						***		T	1							1	1		
4	GHD-BH4 6.0 6.45	30/07/2018	soil	1					1			Х									1							1	1		
5	GHD-BH4 7.5 7.95	30/07/2018	soil	1								Х				\top												1	1		
6	GHD-BH4 9.0 9.45	30/07/2018	soil	1					T			X																1	1		
7	GHD-BH4 10.5 10.95	30/07/2018	soil	1								Х																1	1		
8	GHD-BH4 12.0 12.45	30/07/2018	soil	1					1			Х																1	1		
9	GHD-BH4 13.5 13.81	30/07/2018	soil	7								Х									T							1	1		
10	GHD-BH4 15.0 15.45	30/07/2018	soil						1			Х																1	1		
11	GHD-BH4 16.5 16.8	31/07/2018	soil		ĺ							Х																1	1		
12	GHD-BH4 18.0 18.45	31/07/2018	soil	1								X									T							1	1		
13	GHD-BH4 20.4_20.85	31/07/2018	soil		1							Х																1	1		
14	GHD-BH4 22.0 22.45	31/07/2018	soil	7								Х																1	1		
15					1					ПТ																					
16																															
						Lai	borator	ry Sta	ff						Turn	aroun	d time								Method C	of Shipmer	nt	***************************************		Temperature or	arrival:
Relinq	uished By: Clifton Thompsor	n	Receiv	ved B	y;	1/~c	N	a								. , , , , ,						Cou	rior								
Date &	Time: 18:00, 31/07/2018		Date 8	& Tim	<u> </u>	/	ا	<u> </u>		4	201	1 DAY	Υ 🗌	2 DA	(Y [3 🛭	PAY [d Delive	red						Report number	
Signat	Signature: Sign:		ture:		<u> </u>				. ,		5 DAY 10 DAY 1		Other:		1		nsignme	ent#:					- of	\$G103	390						

Enviro Sample NSW

From: Alena Bounkeua

Sent:Friday, 3 August 2018 2:32 PMTo:Enviro Sample NSW; COC NSWSubject:*update* GHD 2127425 COC4

Attachments: Copy of COC4 2127425_Eurofins_Chain Of Custody 1

_contamination_updated3Aug.xls

Follow Up Flag: Follow up Flag Status: Flagged

Hi All,

Updated COC for report 610390

Cheers!

Warm Regards,

Alena Bounkeua **Eurofins | mgt**

Phone: (02) 9900 8414

Email: AlenaBounkeua@eurofins.com

From: Jacqui Hallchurch [mailto:Jacqui.Hallchurch@ghd.com]

Sent: Friday, 3 August 2018 2:25 PM **To:** Alena Bounkeua; Clifton Thompson

Cc: Nibha Vaidya

Subject: RE: GHD 2127425 COC4

EXTERNAL EMAIL*

Good afternoon

Apologies for the delay. Please find attached updated COC with contamination analyses requested for these samples

Kind regards

jacqui

From: AlenaBounkeua@eurofins.com <AlenaBounkeua@eurofins.com>

Sent: Thursday, 2 August 2018 10:33 AM

To: Clifton Thompson < <u>Clifton.Thompson@ghd.com</u>>

Cc: Jacqui Hallchurch <Jacqui.Hallchurch@ghd.com>; Nibha Vaidya <NibhaVaidya@eurofins.com>

Subject: RE: GHD 2127425 COC4

Hi Clifton,

Thanks for the COC.

No worries, send through the updated COC when ready.

Let me know if there is anything else I can help you with.

Warm Regards,

Alena Bounkeua **Eurofins | mgt**

Phone: (02) 9900 8414

Email: AlenaBounkeua@eurofins.com

From: Clifton Thompson [mailto:Clifton.Thompson@qhd.com]

Sent: Wednesday, 1 August 2018 10:24 PM

To: Enviro Sample NSW **Cc:** Jacqui Hallchurch

Subject: GHD 2127425 COC4

Hi guys,

Please find the attached COC for samples delivered yesterday evening. Jacqui Hallchurch will update the COC for additional testing and send it through.

Regards,

Clifton Thompson

Geotechnical Engineer

GHD

Proudly employee owned

T: +61 2 8898 8812 | M: +61 431 470 139 | E: clifton.thompson@qhd.com Level 2, 20 Smith Street Parramatta NSW 2150 Australia | www.ghd.com

Connect

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY& BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

Click here to report this email as spam.

ScannedByWebsenseForEurofins

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it;

you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

☑ Sydney

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400 Email: enviro.syd@mgtlabmark.com.au Ünit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtlabmark.com.au

☐ Brisbane

☐ Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mgtlabmark.com.au

CHAIN OF CUSTODY RECORD CLIENT DETAILS Page ___1_ of ___1_ Company Name : GHD Pty Ltd Contact Name : Clifton Thompsoon Purchase Order: 2127425 COC Number : 4 PROJECT Number : 2127425 Eurofins | mgt quote ID : 170808GHDN Office Address : Project Manager : Justin Kabat Level 15, 133 Castlereagh Street, Sydney NSW 2000 PROJECT Name : Scotland Island Energy Reliability Project Email for results : clifton.thompson@ghd.com Data output format: Esdat, PDF Some common holding times (with correct preservation). Analytes For further information contact the lab Special Directions & Comments : Soils Waters (pH, EC, CI metals) ID (presence/absence)-AS4964-2004 BTEX, MAH, VOC BTEX. MAH. VOC 14 days pHfox) Special Directions & Comments: TRH, PAH, Phenols, Pesticides 7 days 14 days TRH, PAH, Phenols, Pesticides (TRH/PAH/BTEXN/8 Heavy Metals 6 months Heavy Metals 6 month Zip lock bag samples frozen overnight and been on ice all and other times. Please freeze zip lock bags for possible future Mercury, CrVI 28 days 28 days Mercury, CrVI SPOCAS testing. Thanks pH_d Microbiological testing 24 hours B13 OCP / PCB Microbiological testing 72 hours BOD, Nitrate, Nitrite, Total N 2 days 28 days Anions Screen Solids - TSS, TDS etc 7 days SPOCAS, pH Field and FOX, CrS 24 hours TPH (Ferrous iron days ASLP, TCLP 7 days Eurofins | mgt DI water batch number: Field (B7 BTEX/ TCLP Suite F Suite I Containers: 뷴 Sample ID Date Matrix Sample comments: 1LP 250P 125P 40mL vial 125mL A bag 1LA Jar Χ GHD-BH4 1.5 1.95 30/07/201 soil Х х Х 1 Х GHD-BH4 3.0 3.45 30/07/201 soil 1 1 Х 1 GHD-BH4 4.5 4.95 30/07/2018 soil Х Х GHD-BH4 6.0 6.45 30/07/201 soil 1 Х GHD-BH4 7.5 7.95 1 30/07/2018 soil GHD-BH4 9.0 9.45 30/07/201 soil Χ 1 1 GHD-BH4 10.5 10.95 30/07/2018 soil Х 1 Х 1 GHD-BH4_12.0_12.45 30/07/2018 soil 1 Х GHD-BH4 13.5 13.81 30/07/201 soil 1 Х 1 GHD-BH4_15.0_15.45 30/07/201 soil х 1 11 GHD-BH4 16.5 16.8 31/07/201 soil Х 1 GHD-BH4_18.0_18.45 31/07/2018 Х 12 soil 1 Х 1 13 GHD-BH4_20.4_20.85 31/07/2018 soil GHD-BH4 22.0 22.45 Х 1 14 31/07/201 soil 15 16 Turn around time Temperature on arrival: Laboratory Staff Method Of Shipment Relinquished By: Clifton Thompson Received By: ☐ Courier 1 DAY 2 DAY 3 DAY Date & Time: 18:00, 31/07/2018 Date & Time : $\overline{}$ Hand Delivered Report number: Postal 10 DAY 5 DAY 🗸 Other: Signature: Signature: Courier Consignment #:

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

GHD Pty Ltd NSW Company name:

Contact name: Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Aug 1, 2018 10:24 PM Date/Time received:

Eurofins | mgt reference: 610390

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 6.1 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- **7** Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

No Jar or bag received for sample GHD-BH4 12.0 12.45 analysis cancelled. No bag received for sample GHD-BH4 1.5 1.95 analysis cancelled.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson

Report 610390-AID

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

 Project ID
 2127425

 Received Date
 Aug 01, 2018

 Date Reported
 Aug 09, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

 Project ID
 2127425

 Date Sampled
 Jul 30, 2018

 Report
 610390-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
GHD-BH4_1.5_1.95	18-Au02475	Jul 30, 2018	Sample consisted of: Dark Grey fine grain soil and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Page 2 of 8

Sample History

Date Reported: Aug 09, 2018

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyAug 03, 2018Indefinite

Page 3 of 8

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Aug 1, 2018 10:24 PM

Aug 9, 2018

Clifton Thompson

5 Day

Company Name: GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: Project ID: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

2127425

Order No.: 2127425 Report #: 610390

Phone: 02 9239 7100 **Fax:** 02 9239 7199

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Mall			mple Detail			Asbestos - AS4964	CANCELLED	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
	ourne Laborato			271		Х			X	Х	X
	ney Laboratory bane Laboratory						Х	Х		^	
	h Laboratory - N										
	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	GHD- BH4_1.5_1.95	Jul 30, 2018		Soil	S18-Au02475	Х			х	Х	Х
2	GHD- BH4_3.0_3.45	Jul 30, 2018		Soil	S18-Au02476			Х			
3	GHD- BH4_4.5_4.95	Jul 30, 2018		Soil	S18-Au02477			Х	Х	Х	х
4	GHD- BH4_6.0_6.45	Jul 30, 2018		Soil	S18-Au02478			Х			
5	GHD- BH4_7.5_7.95	Jul 30, 2018		Soil	S18-Au02479			Х			
6	GHD-	Jul 30, 2018		Soil	S18-Au02480			Х			

Page 4 of 8

Report #:

Phone:

Fax:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

610390

02 9239 7100

02 9239 7199

Sydney Unit F3, Building F Brisbane

Received:

Priority:

Contact Name:

Due:

16 Mars Road

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Aug 1, 2018 10:24 PM

Aug 9, 2018

Clifton Thompson

5 Day

Company Name: GHD Pty Ltd NSW Order No.: 2127425

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT **Project Name:**

Address:

Project ID: 2127425

		Sa	mple Detail			Asbestos - AS4964	CANCELLED	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271							
Syd	ney Laboratory	- NATA Site # 1	8217			Х			Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794				Х	Х			
Pert	h Laboratory - N	NATA Site # 237	36	1							
	BH4_9.0_9.45										
7	GHD- BH4_10.5_10. 95	Jul 30, 2018		Soil	S18-Au02481			Х			
8	GHD- BH4_12.0_12. 45	Jul 30, 2018		Soil	S18-Au02482		х				
9	GHD- BH4_13.5_13. 81	Jul 30, 2018		Soil	S18-Au02483			Х			
10	GHD- BH4_15.0_15. 45	Jul 30, 2018		Soil	S18-Au02484			Х		Х	х
11	GHD- BH4_16.5_16.	Jul 31, 2018		Soil	S18-Au02485			х			

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Order No.:

Report #:

Phone:

Fax:

Melbourne

2127425

02 9239 7100

02 9239 7199

610390

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Received: Aug 1, 2018 10:24 PM

Due: Aug 9, 2018
Priority: 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - AS4964	CANCELLED	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
	oourne Laborato			71							
	ney Laboratory					Х		.,	Х	Х	Х
	bane Laboratory						Х	Х			
Pert	<mark>h Laboratory - N</mark>	IATA Site # 237	736								
12	8 GHD- BH4_18.0_18. 45	Jul 31, 2018		Soil	S18-Au02486			х			
13	GHD- BH4_20.4_20. 85	Jul 31, 2018		Soil	S18-Au02487	_		Х	_		
14	GHD- BH4_22.0_22. 45	Jul 31, 2018		Soil	S18-Au02488			Х			
Test	Counts					1	1	12	2	3	3

Page 6 of 8

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Aug 09, 2018

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

The sample received was not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-sample to be analysed accurately represented the sample received.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

Date Reported: Aug 09, 2018

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

⁻ Indicates Not Requested

 $^{^{\}star}$ Indicates NATA accreditation does not cover the performance of this service

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson

Report 610390-S

Project name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Aug 01, 2018

Client Sample ID			^{G01} GHD- BH4_1.5_1.95	GHD- BH4_3.0_3.45	GHD- BH4_4.5_4.95	GHD- BH4_6.0_6.45
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au02475	S18-Au02476	S18-Au02477	S18-Au02478
Date Sampled			Jul 30, 2018	Jul 30, 2018	Jul 30, 2018	Jul 30, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions	•				
TRH C6-C9	20	mg/kg	< 40	-	< 20	-
TRH C10-C14	20	mg/kg	< 40	-	< 20	-
TRH C15-C28	50	mg/kg	< 100	-	< 50	-
TRH C29-C36	50	mg/kg	< 100	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 100	-	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	72	-	77	-
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 1	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 40	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 40	-	< 20	-
TRH >C10-C16	50	mg/kg	< 100	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 100	-	< 50	-
TRH >C16-C34	100	mg/kg	< 200	-	< 100	-
TRH >C34-C40	100	mg/kg	< 200	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.2	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.4	-	1.2	-
Acenaphthene	0.5	mg/kg	< 1	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 1	-	< 0.5	-
Anthracene	0.5	mg/kg	< 1	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 1	-	< 0.5	-
Chrysene	0.5	mg/kg	< 1	-	< 0.5	-

Client Sample ID			^{G01} GHD- BH4_1.5_1.95	GHD- BH4_3.0_3.45	GHD- BH4_4.5_4.95	GHD- BH4_6.0_6.45
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au02475	S18-Au02476	S18-Au02477	S18-Au02478
Date Sampled			Jul 30, 2018	Jul 30, 2018	Jul 30, 2018	Jul 30, 2018
Test/Reference	LOR	Unit		July 20, 2010	0.00, 2010	Cui Co, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Offic				
Dibenz(a.h)anthracene	0.5	ma/ka	- 1		< 0.5	
Fluoranthene	0.5	mg/kg	<1	-	< 0.5	-
Fluorene	0.5	mg/kg	<1		< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	<1		< 0.5	-
Naphthalene	0.5	mg/kg	<1	-	< 0.5	-
Phenanthrene	0.5	mg/kg	<1	-	< 0.5	
	0.5	mg/kg	<1	-	< 0.5	-
Pyrene Total PAH*		mg/kg		-		-
2-Fluorobiphenyl (surr.)	0.5	mg/kg	< 1	-	< 0.5	-
	1	%	104	-	105	-
p-Terphenyl-d14 (surr.) Organochlorine Pesticides	1	70	112	-	111	-
	0.4		.0.4		.0.1	
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.2	mg/kg	< 0.2	-	< 0.2	-
Toxaphene	1 0.05	mg/kg	< 1	-	< 1	-
Aldrin and Dieldrin (Total)* DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
` '	0.1	mg/kg	< 0.1 99	-	< 0.1	-
Dibutylchlorendate (surr.)	1 1	%	102	-	96 97	-
Tetrachloro-m-xylene (surr.)	I	70	102	-	97	-
Polychlorinated Biphenyls	0.5	ma =: /1	.0.5		.0.5	
Arcelor 1331	0.5	mg/kg	< 0.5	-	< 0.5	-
Arcelor 1333	0.1	mg/kg	< 0.1	-	< 0.1	-
Arcelor 1343	0.5	mg/kg	< 0.5	-	< 0.5	-
Arcelor 1242	0.5	mg/kg	< 0.5	-	< 0.5	-
Arcelor 1254	0.5	mg/kg	< 0.5	-	< 0.5	-
Arcelor 1254	0.5	mg/kg	< 0.5	-	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	99	-	96	-
Tetrachloro-m-xylene (surr.)	1	%	102	-	97	

Client Sample ID Sample Matrix			G01GHD- BH4_1.5_1.95 Soil	GHD- BH4_3.0_3.45 Soil	GHD- BH4_4.5_4.95 Soil	GHD- BH4_6.0_6.45 Soil
Eurofins mgt Sample No.			S18-Au02475	S18-Au02476	S18-Au02477	S18-Au02478
Date Sampled			Jul 30, 2018	Jul 30, 2018	Jul 30, 2018	Jul 30, 2018
Test/Reference	LOR	Unit				
Heavy Metals	•					
Arsenic	2	mg/kg	18	-	< 2	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	18	-	6.7	-
Copper	5	mg/kg	< 5	-	< 5	-
Lead	5	mg/kg	5.7	-	< 5	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Nickel	5	mg/kg	7.6	-	< 5	-
Zinc	5	mg/kg	16	-	< 5	-
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	-	5.0	4.7	5.0
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	3.6	3.9	3.7
Reaction Ratings*S05		comment	-	4.0	2.0	2.0
% Moisture	1	%	43	-	10	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			GHD- BH4_7.5_7.95 Soil S18-Au02479 Jul 30, 2018	GHD- BH4_9.0_9.45 Soil S18-Au02480 Jul 30, 2018	GHD- BH4_10.5_10.9 5 Soil S18-Au02481 Jul 30, 2018	GHD- BH4_13.5_13.8 1 Soil S18-Au02483 Jul 30, 2018
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	4.4	4.4	4.8	5.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	3.4	3.5	3.7	4.1
Reaction Ratings*S05		comment	2.0	1.0	2.0	2.0

Client Sample ID			GHD- BH4_15.0_15.4 5	GHD- BH4_16.5_16.8	GHD- BH4_18.0_18.4 5	GHD- BH4_20.4_20.8 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au02484	S18-Au02485	S18-Au02486	S18-Au02487
Date Sampled			Jul 30, 2018	Jul 31, 2018	Jul 31, 2018	Jul 31, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	130	-	-	-
TRH C15-C28	50	mg/kg	120	-	-	-
TRH C29-C36	50	mg/kg	130	-	-	-
TRH C10-36 (Total)	50	mg/kg	380	-	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	82	-	-	-

Client Sample ID			GHD- BH4_15.0_15.4 5	GHD- BH4_16.5_16.8	GHD- BH4_18.0_18.4 5	GHD- BH4_20.4_20.8 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au02484	S18-Au02485	S18-Au02486	S18-Au02487
Date Sampled			Jul 30, 2018	Jul 31, 2018	Jul 31, 2018	Jul 31, 2018
Test/Reference	LOR	Unit		,	,	,
Total Recoverable Hydrocarbons - 2013 NEPM F		Offic				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	_	_	
TRH C6-C10	20	mg/kg	29		-	
TRH C6-C10 less BTEX (F1) ^{N04}	20		29		_	-
TRH >C10-C10 less BTEX (FT)	50	mg/kg mg/kg	110	_	_	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	110	_	_	-
TRH >C16-C34	100		200	_	_	-
TRH >C10-C34	100	mg/kg	< 100	_	-	-
TRH >C10-C40 (total)*	100	mg/kg	310	_	-	-
, , ,	100	mg/kg	310	-	-	-
Polycyclic Aromatic Hydrocarbons	0.5		.0.5			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5 0.6	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg		-		-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2 < 0.5	-	-	-
Acenaphthulana	0.5	mg/kg		-	-	-
Actor	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5 < 0.5	-	-	
Benzo(g.h.i)perylene Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
	0.5	mg/kg	< 0.5		-	
Chrysene Dibonz/o b)onthrocono	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg		-	-	-
Fluorene Fluorene	0.5	mg/kg	< 0.5 < 0.5	-	-	-
	0.5	mg/kg	< 0.5	_	-	-
Indeno(1.2.3-cd)pyrene Naphthalene	0.5	mg/kg	< 0.5	_	-	_
Phenanthrene	0.5	mg/kg mg/kg	< 0.5	_	-	_
Pyrene	0.5	mg/kg	< 0.5		-	-
Total PAH* 2-Fluorobiphenyl (surr.)	0.5	mg/kg %	< 0.5 102	-	-	-
p-Terphenyl-d14 (surr.)	1	%	103	-	-	-
Heavy Metals		/0	103	_	_	-
Arsenic	2	mg/kg	3.8	_	-	
Cadmium	0.4	mg/kg	< 0.4		-	-
Chromium	5	mg/kg	30	-	-	-
Copper	5	mg/kg	11	-	-	-
Lead	5	mg/kg	12	-	-	-
Mercury	0.1	mg/kg	< 0.1	-	-	-
Nickel	5	mg/kg	5.2	-	-	-
Zinc	5	mg/kg	10	-	-	-
Acid Sulfate Soils Field pH Test		i iiig/kg	10	-	-	<u> </u>
pH-F (Field pH test)*	0.1	pH Units	4.9	4.7	4.7	4.9
pH-FOX (Field pH Peroxide test)*	0.1	pH Units		3.6	3.8	4.9
Reaction Ratings*S05	0.1			2.0	2.0	2.0
reaction realings		comment	4.0	2.0	2.0	2.0
0/ Majotura		0/	10			
% Moisture	1	%	16	-	-	_

Client Sample ID			GHD- BH4_22.0_22.4 5
Sample Matrix			Soil
Eurofins mgt Sample No.			S18-Au02488
Date Sampled			Jul 31, 2018
Test/Reference	LOR	Unit	
Acid Sulfate Soils Field pH Test			
pH-F (Field pH test)*	0.1	pH Units	4.8
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	3.5
Reaction Ratings*S05		comment	2.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Aug 08, 2018	Holding Time 14 Day
- Method: TRH C6-C36 - LTM-ORG-2010 BTEX	Sydney	Aug 08, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 08, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 08, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Polycyclic Aromatic Hydrocarbons	Sydney	Aug 08, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water Metals M8	Sydney	Aug 08, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Organochlorine Pesticides	Sydney	Aug 08, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water Polychlorinated Biphenyls	Sydney	Aug 08, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water Acid Sulfate Soils Field pH Test	Brisbane	Aug 06, 2018	7 Days
- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests % Moisture	Sydney	Aug 08, 2018	14 Day

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Order No.: 2127425 Received: Aug 1, 2018 10:24 PM Report #: 610390 Due: Aug 9, 2018 Phone: 02 9239 7100 Priority: 5 Day Fax: 02 9239 7199 **Contact Name:** Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Mall						Asbestos - AS4964	CANCELLED	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
				271		Х			X	Х	Х
							Х	Х			
	Perth Laboratory - NATA Site # 20794										
External Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	GHD- BH4_1.5_1.95	Jul 30, 2018		Soil	S18-Au02475	Х			х	Х	х
2	GHD- BH4_3.0_3.45	Jul 30, 2018		Soil	S18-Au02476			х			
3	GHD- BH4_4.5_4.95	Jul 30, 2018		Soil	S18-Au02477			Х	х	Х	х
4	GHD- BH4_6.0_6.45	Py Laboratory - NATA Site # 18217 Anne Laboratory - NATA Site # 20794 Laboratory - NATA Site # 23736 Pal Laboratory Sample ID Sample Date Sampling Time Soil S18-Au02		S18-Au02478			Х				
5	Sample ID Sample Date Sampling Sile Auco							Х			
6	GHD-	Jul 30, 2018		Soil	S18-Au02480			х			

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 7 of 17

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 9239 7199

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425
 Received:
 Aug 1, 2018 10:24 PM

 Report #:
 610390
 Due:
 Aug 9, 2018

 Phone:
 02 9239 7100
 Priority:
 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

						Asbestos - AS4964	CANCELLED	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
				271							
_						Х			Х	Х	Х
							Х	Х			
Pert	ey Laboratory - NATA Site # 18217 pane Laboratory - NATA Site # 20794 Laboratory - NATA Site # 23736 BH4_9.0_9.45										
	BH4_10.5_10. 95 GHD- BH4_12.0_12. 45 GHD- BH4_13.5_13. 81 GHD- BH4_13.5_15. 45 Jul 30, 2018 Soil S18-Au02 S18-Au02 S18-Au02 S18-Au02										
7	BH4_10.5_10.	Jul 30, 2018		Soil	S18-Au02481			х			
8	BH4_12.0_12.	Jul 30, 2018		Soil	S18-Au02482		Х				
9	BH4_13.5_13.	Jul 30, 2018		Soil	S18-Au02483			Х			
10	BH4_15.0_15.	Jul 30, 2018		Soil	S18-Au02484			Х		Х	х
11		Jul 31, 2018		Soil	S18-Au02485			Х			

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Order No.: 2127425 Received: Aug 1, 2018 10:24 PM Report #: 610390 Due: Aug 9, 2018 Phone: 02 9239 7100 Priority: 5 Day **Contact Name:** Clifton Thompson Fax: 02 9239 7199

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail						Asbestos - AS4964	CANCELLED	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271										
	Sydney Laboratory - NATA Site # 18217								Х	Х	Х
	Brisbane Laboratory - NATA Site # 20794						Х	Х			
Pert											
12	GHD- BH4_18.0_18. 45	Jul 31, 2018		Soil	S18-Au02486			х			
13	ydney Laboratory - NATA Site # 18217 risbane Laboratory - NATA Site # 20794 erth Laboratory - NATA Site # 23736							х			
14	GHD- BH4_22.0_22. 45	Jul 31, 2018		Soil	S18-Au02488			х			
Test	Counts					1	1	12	2	3	3

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data. Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u> </u>	•	'		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Rg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluorene Fluorene	mg/kg	1			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
\	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	<1	1	Pass	
Method Blank	ı ıııg/ı.g			1 400	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1010	mg/kg	< 0.1	0.5	Pass	
Arcelor 1242	mg/kg	< 0.5	0.5	Pass	
Arcelor 1242	mg/kg	< 0.5	0.5	Pass	
Arcelor 4054	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank		1	T		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons				
TRH C6-C9	%	78	70-130	Pass	
TRH C10-C14	%	73	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	81	70-130	Pass	
Toluene	%	81	70-130	Pass	
Ethylbenzene	%	79	70-130	Pass	
m&p-Xylenes	%	83	70-130	Pass	
o-Xylene	%	83	70-130	Pass	
Xylenes - Total	%	83	70-130	Pass	
LCS - % Recovery		T T	T T		
Total Recoverable Hydrocarbons - 2013 NEPM Fracti		140			
Naphthalene	%	110	70-130	Pass	
TRH C6-C10	%	73	70-130	Pass	
TRH >C10-C16	%	70	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons	T				
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	92	70-130	Pass	
Anthracene	%	89	70-130	Pass	
Benz(a)anthracene	%	92	70-130	Pass	
Benzo(a)pyrene	%	93	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene			%	89		70-130	Pass	
Benzo(g.h.i)perylene			%	99		70-130	Pass	
Benzo(k)fluoranthene			%	95		70-130	Pass	
Chrysene			%	95		70-130	Pass	
Dibenz(a.h)anthracene			%	105		70-130	Pass	
Fluoranthene			%	94		70-130	Pass	
Fluorene			%	90		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	93		70-130	Pass	
Naphthalene			%	93		70-130	Pass	
Phenanthrene			%	88		70-130	Pass	
Pyrene			%	96		70-130	Pass	
LCS - % Recovery			7.5				1 0.00	
Organochlorine Pesticides								
4.4'-DDD			%	106		70-130	Pass	
4.4'-DDE			%	96		70-130	Pass	
4.4'-DDT			%	86		70-130	Pass	
a-BHC			%	96		70-130	Pass	
Aldrin			%	100		70-130	Pass	
b-BHC			%	93		70-130	Pass	
d-BHC			%	95		70-130	Pass	
Dieldrin			%	95		70-130	Pass	
			%	i			Pass	
Endosulfan I			%	96		70-130	Pass	
Endosulfan II				95		70-130		
Endosulfan sulphate			%	94		70-130	Pass	
Endrin			%	82		70-130	Pass	
Endrin aldehyde			%	100		70-130	Pass	
Endrin ketone			%	95		70-130	Pass	
g-BHC (Lindane)			%	96		70-130	Pass	
Heptachlor			%	96		70-130	Pass	
Heptachlor epoxide			%	96		70-130	Pass	
Hexachlorobenzene			%	98		70-130	Pass	
Methoxychlor			%	75		70-130	Pass	
LCS - % Recovery				T			Γ	
Polychlorinated Biphenyls								
Aroclor-1260			%	96		70-130	Pass	
LCS - % Recovery				T	T T		Г	
Heavy Metals								
Arsenic			%	100		70-130	Pass	
Cadmium			%	99		70-130	Pass	
Chromium			%	100		70-130	Pass	
Copper			%	101		70-130	Pass	
Lead			%	101		70-130	Pass	
Mercury			%	97		70-130	Pass	
Nickel			%	101		70-130	Pass	
Zinc			%	102		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S18-Au06818	NCP	%	73		70-130	Pass	
TRH C10-C14	S18-Au06808	NCP	%	74		70-130	Pass	
Spike - % Recovery			1.					
BTEX				Result 1				
				1	1 1			
Benzene	S18-Au06864	NCP	%	79		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Ethylbenzene	S18-Au06864	NCP	%	76		70-130	Pass	
m&p-Xylenes	S18-Au06864	NCP	%	79		70-130	Pass	
o-Xylene	S18-Au06864	NCP	%	81		70-130	Pass	
Xylenes - Total	S18-Au06864	NCP	%	80		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1				
Naphthalene	S18-Au06864	NCP	%	95		70-130	Pass	
TRH C6-C10	S18-Au06818	NCP	%	71		70-130	Pass	
TRH >C10-C16	S18-Au06808	NCP	%	70		70-130	Pass	
Spike - % Recovery				•				
Polycyclic Aromatic Hydrocarbo	ons			Result 1				
Acenaphthene	S18-Au06159	NCP	%	89		70-130	Pass	
Acenaphthylene	S18-Au06159	NCP	%	94		70-130	Pass	
Anthracene	S18-Au06159	NCP	%	86		70-130	Pass	
Benz(a)anthracene	S18-Au06159	NCP	%	97		70-130	Pass	
Benzo(a)pyrene	S18-Au06159	NCP	%	93		70-130	Pass	
Benzo(b&j)fluoranthene	S18-Au06159	NCP	%	88		70-130	Pass	
Benzo(g.h.i)perylene	S18-Au06159	NCP	%	96		70-130	Pass	
Benzo(k)fluoranthene	S18-Au06159	NCP	%	91		70-130	Pass	
Chrysene	S18-Au06159	NCP	%	95		70-130	Pass	
Dibenz(a.h)anthracene	S18-Au06159	NCP	%	105		70-130	Pass	
Fluoranthene	S18-Au06159	NCP	%	97		70-130	Pass	
Fluorene	S18-Au06159	NCP	%	89		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-Au06159	NCP	%	101		70-130	Pass	
Naphthalene	S18-Au06159	NCP	%	95		70-130	Pass	
Phenanthrene	S18-Au06159	NCP	<u> </u>	83		70-130	Pass	
Pyrene	S18-Au06159	NCP	<u> </u>	97		70-130	Pass	
Spike - % Recovery	310-Au00139	INCF	/0] 31		70-130	rass_	
Organochlorine Pesticides				Result 1	Т	I		
4.4'-DDD	S18-Au08245	NCP	%	127		70-130	Pass	
4.4'-DDE	S18-Au08245	NCP	%	99		70-130	Pass	
				83				
4.4'-DDT	S18-Au06773	NCP	%	97		70-130	Pass	
a-BHC	S18-Au08245	NCP	%			70-130	Pass	
Aldrin	S18-Au08245	NCP	%	109		70-130	Pass	
b-BHC	S18-Au08245	NCP	%	91		70-130	Pass	
d-BHC	S18-Au08245	NCP	%	101		70-130	Pass	
Dieldrin .	S18-Au08245	NCP	%	98		70-130	Pass	
Endosulfan I	S18-Au08245	NCP	%	98		70-130	Pass	
Endosulfan II	S18-Au08245	NCP	%	97		70-130	Pass	
Endosulfan sulphate	S18-Au08245	NCP	%	93		70-130	Pass	
Endrin Endrin	S18-Au08245	NCP	%	87		70-130	Pass	
Endrin aldehyde	S18-Au08245	NCP	%	83		70-130	Pass	
Endrin ketone	S18-Au08245	NCP	%	71		70-130	Pass	
g-BHC (Lindane)	S18-Au08245	NCP	%	90		70-130	Pass	-
Heptachlor	S18-Au08245	NCP	%	72		70-130	Pass	
Heptachlor epoxide	S18-Au08245	NCP	%	101		70-130	Pass	
Hexachlorobenzene	S18-Au08245	NCP	%	99		70-130	Pass	-
Methoxychlor	S18-Au06773	NCP	%	97		70-130	Pass	
Toxaphene	S18-Jl33208	NCP	%	95		70-130	Pass	
Spike - % Recovery								
Polychlorinated Biphenyls	1 2			Result 1				-
Aroclor-1260	S18-Au08245	NCP	%	93		70-130	Pass	
Spike - % Recovery						I		
Heavy Metals				Result 1				<u> </u>

Cadmium	Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
Cathrium		•								Code
Chromitism										
Coppor										
Lead										
Mercury										
Nickel	I									
Test	cury	S18-Au06151							Pass	
Test	el	S18-Au06151							Pass	
Duplicate Duplicate Duplicate Source S		S18-Au06151	NCP	%	111				Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Test	Lab Sample ID		Units	Result 1			Acceptance Limits		Qualifying Code
TRH C6-C9	cate				ı	ı				
TRH C10-C14	Recoverable Hydrocarbons - 1	999 NEPM Fract			Result 1	Result 2	RPD			
TRH C15-C28	C6-C9	S18-Au06863		mg/kg	< 20	< 20	<1	30%	Pass	
TRH C29-C36	C10-C14	S18-Au06158	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate BTEX	C15-C28	S18-Au06158	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Benzene	C29-C36	S18-Au06158	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Benzene	cate									
Toluene	(Result 1	Result 2	RPD			
Ethylbenzene	zene	S18-Au06863	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes S18-Au06863 NCP mg/kg < 0.2 < 0.2 < 1 30% Pass o-Xylene S18-Au06863 NCP mg/kg < 0.1	ene	S18-Au06863	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene \$18-Au06863 NCP mg/kg < 0.1 < 1 30% Pass Xylenes - Total \$18-Au06863 NCP mg/kg < 0.3 < 1 30% Pass Duplicate Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Result 2 RPD Image: Result 1 Result 2 RPD Image: Result 1 Result 2 RPD Image: Result 1 Result 2 RPD Image: Result 2 RPD Image: Result 2 RPD Image: Result 2 RPD Image: Result 2 RPD Image: Result 2 RPD Image: Result 2 RPD Image: Result 2 RPD Image: Result 3 Image: Result 3 Image: Result 4 Result 3 Image: Result 4 Result 4 Result 4 Result 4 Result 4 Image: Result 4 Result 4 Result 4 Image: Result 4 Image: Result 4 Image: Result 4 Image: Result 4 Image: Result 4 Result 4 Result 4 Image: Result 4 Image: Result 4 Result 4 Result 4 Image: Result 4 Image: Result 4 Image: Result 4 Image	Ibenzene	S18-Au06863	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	-Xylenes	S18-Au06863	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Result 2 RPD	lene	S18-Au06863	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	nes - Total	S18-Au06863	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Naphthalene	icate									
Naphthalene	Recoverable Hydrocarbons - 2	013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C10	nthalene	S18-Au06863	NCP	mg/kg	< 0.5	< 0.5		30%	Pass	
TRH > C10 - C16	C6-C10	S18-Au06863	NCP		< 20	< 20	<1	30%	Pass	
TRH > C16-C34 S18-Au06158 NCP mg/kg < 100 < 1 30% Pass TRH > C34-C40 S18-Au06158 NCP mg/kg < 100 < 1 30% Pass Duplicate Polycyclic Aromatic Hydrocarbons Result 1 Result 2 RPD Acenaphthene S18-Au07709 NCP mg/kg < 0.5		S18-Au06158			1			30%	Pass	
TRH > C34 - C40		S18-Au06158			1			30%		
Duplicate Polycyclic Aromatic Hydrocarbons Result 1 Result 2 RPD	>C34-C40	S18-Au06158						30%	Pass	
Result 1 Result 2 RPD				<u> </u>						
Acenaphthene \$18-Au07709 NCP mg/kg < 0.5 < 1 30% Pass Acenaphthylene \$18-Au07709 NCP mg/kg < 0.5					Result 1	Result 2	RPD			
Acenaphthylene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Anthracene \$18-Au07709 NCP mg/kg < 0.5	· · ·	S18-Au07709	NCP	ma/ka		< 0.5		30%	Pass	
Anthracene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Benz(a)anthracene \$18-Au07709 NCP mg/kg < 0.5	·									
Benz(a)anthracene \$18-Au07709 NCP mg/kg < 0.5 < 1 30% Pass Benzo(a)pyrene \$18-Au07709 NCP mg/kg < 0.5	' '									
Benzo(a)pyrene \$18-Au07709 NCP mg/kg < 0.5 < 1 30% Pass Benzo(b&j)fluoranthene \$18-Au07709 NCP mg/kg < 0.5										
Benzo(b&j)fluoranthene \$18-Au07709 NCP mg/kg < 0.5 < 1 30% Pass Benzo(g.h.i)perylene \$18-Au07709 NCP mg/kg < 0.5	` '									
Benzo(g.h.i)perylene S18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Benzo(k)fluoranthene S18-Au07709 NCP mg/kg < 0.5	\ /! /									
Benzo(k)fluoranthene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Chrysene \$18-Au07709 NCP mg/kg < 0.5	· //									
Chrysene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Dibenz(a.h)anthracene \$18-Au07709 NCP mg/kg < 0.5	(0 /1 /									
Dibenz(a.h)anthracene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Fluoranthene \$18-Au07709 NCP mg/kg < 0.5	,									
Fluoranthene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Fluorene \$18-Au07709 NCP mg/kg < 0.5										
Fluorene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Indeno(1.2.3-cd)pyrene \$18-Au07709 NCP mg/kg < 0.5	· /									
Indeno(1.2.3-cd)pyrene										
Naphthalene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 < 1 30% Pass Phenanthrene \$18-Au07709 NCP mg/kg < 0.5										
Phenanthrene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 <1 30% Pass Pyrene \$18-Au07709 NCP mg/kg < 0.5	` '''									
Pyrene \$18-Au07709 NCP mg/kg < 0.5 < 0.5 <1 30% Pass Duplicate Result 1 Result 2 RPD RPD Result 2 RPD Result 3 Pass Chlordanes - Total \$18-Au06871 NCP mg/kg < 0.1										
Duplicate Result 1 Result 2 RPD Chlordanes - Total S18-Au06871 NCP mg/kg < 0.1										
Organochlorine Pesticides Result 1 Result 2 RPD Chlordanes - Total S18-Au06871 NCP mg/kg < 0.1		310-AUU//U9	INCP	mg/kg	< 0.5	< 0.5	<1	30%	rass	
Chlordanes - Total S18-Au06871 NCP mg/kg < 0.1 < 0.1 <1 30% Pass					Result 1	Result 2	RPD			
		S18-Au06871	NCP	ma/ka				30%	Pass	
4.4'-DDD S18-Au06871 NCP mg/kg < 0.05 < 0.05 < 1 30% Pass			NCP							
4.4'-DDE S18-Au06871 NCP mg/kg < 0.05 < 0.05 <1 30% Pass 4.4'-DDT S18-Au06871 NCP mg/kg < 0.05										

-									
Duplicate							I		
Organochlorine Pesticides	1	1		Result 1	Result 2	RPD			
a-BHC	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Au06871	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Au06871	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S18-Au06871	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Au06871	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S18-Au06871	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Au06871	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S18-Au06871	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S18-Au06871	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S18-Au06871	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S18-Au06871	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Au06096	NCP	mg/kg	4.5	4.9	10	30%	Pass	
Cadmium	S18-Au06096	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Au06096	NCP	mg/kg	9.1	9.8	7.0	30%	Pass	
Copper	S18-Au06096	NCP	mg/kg	8.1	9.0	11	30%	Pass	
Lead	S18-Au06096	NCP	mg/kg	63	76	20	30%	Pass	
Mercury	S18-Au01486	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Au06096	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S18-Au06096	NCP	mg/kg	38	47	20	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S18-Au00415	NCP	%	3.2	2.8	13	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	S18-Au02476	СР	pH Units	5.0	5.1	pass	30%	Pass	
Reaction Ratings*	S18-Au02476	CP	comment	4.0	4.0	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			_
pH-F (Field pH test)*	S18-Au02487	СР	pH Units	4.9	4.9	pass	30%	Pass	
Reaction Ratings*	S18-Au02487	СР	comment	2.0	2.0	pass	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised By

N02

S05

Nibha Vaidya Analytical Services Manager Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential damages including, but no limited to, lot growing, damages for eladed include and excellent in a finite standard in the terms tested. Unless indicated otherwise, the tests were sindicated otherwise, the tests were, the filted are related only to the terms tested. Unless indicated otherwise, the tests were

Enviro Sample Bris

From: Enviro Sample NSW

Sent: Wednesday, 8 August 2018 4:02 PM

To: Enviro Sample Bris

Subject: FW: Eurofins | mgt Sample Receipt Advice - Report 609184 : Site SCOTLAND

ISLAND ENERGY RELIABILITY PROJECT (2127425)

9/8/15

Attachments: COC1 2127425_Eurofins_Chain Of Custody 5_SPOCAS.xls

Follow Up Flag: Follow up Flag Status: Flagged

Hi Team,

Following additional for samples sent to Brisbane under report No: 609184.

Kind Regards,
Elvis D
Enviro Sample NSW
Sample Receipt NSW

Eurofins | mgt

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 2 9900 8492

Email: EnviroSampleNSW@Eurofins.com

Website: www.eurofins.com.au/environmental-testing

From: Justin Kabat [mailto:Justin.Kabat@ghd.com]

Sent: Wednesday, 8 August 2018 3:40 PM **To:** Enviro Sample NSW; Clifton Thompson

Cc: Jacqui Hallchurch

Subject: RE: Eurofins | mgt Sample Receipt Advice - Report 609184 : Site SCOTLAND ISLAND ENERGY RELIABILITY

PROJECT (2127425)

Hi Elvis

Further to the testing undertaken on samples, we wish to schedule the attached additional testing on remaining sample material (sPOCAS and SCr suites).

Cheers,

Justin Kabat MIEAust CPEng NER Senior Geotechnical Engineer

GHD

T: 61 2 9462 4831 | F: 61 2 8898 8810 | V: 214831 | M: 61 413 244 331 | E: justin.kabat@ghd.com Level 6, 20 Smith Street Parramatta NSW 2150 Australia | http://www.ghd.com/ Water | Energy & Resources | Environment | Property & Buildings | Transportation

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Wednesday, 25 July 2018 2:39 PM

To: Clifton Thompson < Clifton. Thompson@ghd.com>

Cc: Jacqui Hallchurch < <u>Jacqui.Hallchurch@ghd.com</u>>; Justin Kabat < <u>Justin.Kabat@ghd.com</u>>

Subject: Eurofins | mgt Sample Receipt Advice - Report 609184 : Site SCOTLAND ISLAND ENERGY RELIABILITY PROJECT (2127425)

Dear Valued Client,

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Elvis Dsouza

Sample Receipt

Eurofins | mgt Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 29900 8492

Email: <u>EnviroSampleNSW@eurofins.com</u> Website: <u>environment.eurofins.com.au</u>

EnviroNote 1076 - PFAS Biota EnviroNote 1077 - Soil Vapour Sampling - NATA Accreditation

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

Click here to report this email as spam.

ScannedByWebsenseForEurofins

eurofins	

mgt

7		
	/dr	

Sydney
Unit F3 - 6 Building F, 16 Mars Road, Lane Cove
Phone: +612 9900 8400

Email: enviro.syd@mgtlabmark.com.au

Π.	0	ris	ha	n
		115	υa	

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600

Email: enviro.bris@mqtlabmark.com.au

Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mqtlabmark.com.au

											C	;H/	AIN	OF	CU	ST	יםס	r R	EC	OR	RD		- E				2.5				
LIEN	T DETAILS																												age1_	_ of1_	
compa	any Name : GHD Pty Ltd			Con	tact N	Name :	Clifton	Thom	psoo	n						P	urchas	e Ord	r : 21	27425	5						COC Number : 3				
Office	Address :			Proj	ject M	lanager	: Just	in Kab	oat							P	ROJEC	T Nur	ber :	21274	425						Eurofins	mgt quot	te ID : 170	308GHDN	
L	evel 15, 133 Castlereagh Stree	t, Sydney NS	W 2000	Ema	ail for	results	: clifte	on.tho	mpsc	n@ghd	l.com					P	ROJEC	T Nan	ne : So	cotlan	nd Is	land Ener	gy Reliabi	lity Projec	t		Data out	out format:	Esdat, P)F	
												Analy	/tes											Sor			g times (wi			ion).	
pecia	al Directions & Comments :			40	(S)	П	Т	Т			1.2	П	T			Т		Т						Waters		7 1010101		0111001 010		oils	
				84964-2004	metals)						Aggressivity Suite (pH, EC trivity, S04)	(×)						1				BTEX.	MAH. VO	С		14 days	BTEX	, MAH, VO	C		14 days
pecia	al Directions & Comments :			496	8						F,	and pHfox)										TRH, F	PAH, Phen	ols, Pestic	ides	7 days		PAH, Phen		ehir	14 days
				-AS	Ž						9	a p										Heavy				6 months		Metals	1013, 1 63110	1063	6 months
	k bag samples frozen overnight Please freeze zip lock bags for			loo loo	I A						ij	a											ry, CrVI			28 days	110011	ry, CrVI			28 days
	. Thanks	possible lutur	e SPOCAS	pse	/B1	贸					≥ _	(pHf											iological te	estina		24 hours		biological te	natina		72 hours
				ce/a	A.	PCB			65		ok)	2												rite, Total I	V	2 days	Anion		sung		28 days
				sen	15	<u>a</u>			62-92		es.	ee											- TSS, TD			7 days		CAS, pH Fie	old and EC	Y Crs	24 hours
				ed)	(TRH/PAH/BTEXN/8	OCP			Ī		vity	Screen										Ferrou	_	0.00		7 days		, TCLP	na ana i	7, 010	
urofin	ns mgt DI water batch number:			9	B7 (B13	<u>0</u>		/ TPH		L2 A	Field										1 01100	0 11 011			r days	ASLP	TCLP			7 days
				estos	te B	e E	8 metals	X	BTEX	م	te L Re	Œ,			ΙI							Container	s:								A contract of
	Sample ID	Date	Matrix	Asbest	Suite	Suite	8	BTEX	BTI	TCLP	Suite CI, Re	표										1LP	250P	125P	1LA	40mL via	1 125mL A	Jar	bag	Sample	comments:
1	GHD-BH3_16_16.45	17/07/2018	soil									Х																	1		
2	GHD-BH3_17.5_17.77	17/07/2018	soil	-								Х																	1		
3	GHD-BH3 19 19.45	17/07/2018	soil	\vdash								Х					1												1		
4	GHD-BH3_22_22.45	17/07/2018	soil									Х																1	1		
5																															
6																															
7				1													- 1	1 5													
8																	-	5													
9																	4	dk													-
10						9								-1					A62 -												
11																															
12				Т	1	5.				1				_ "																	
13					1					1												1									
14										-4				4																	
15									12														-								
16		- 3							1																	1.	/				
						Lal	borato	ry Stat	ff						Turr	arou	nd time								Method C	f Shipme	nt			Temperature	on arrival:
Relino	quished By: Clifton Thompson	1	Receiv	ved B	3y: /	ade	e.	6	,						Υ 🗆		DAY [1				□ c	ourier							5-2	26°C
Date 8	& Time : 18:00, 24/07/2018		Date 8	& Tim	24		1/18		7	35	My		Y 🗆				_	4					and Delive estal	red						Report numb	er:
Signa	ture:		Signa	ture:		1	1	5	_	-	V	5 DA	Y	10 D	AY L] 0	ther:					Courier C	onsignme	ent#:						600	1184

QS3009_R0

Issue Date: 25 February 2013

Page 1 of 1

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: **GHD Pty Ltd NSW**

Contact name: Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Aug 8, 2018 4:02 PM Date/Time received:

Eurofins | mgt reference: 611405

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 5.3 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 20794

Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson

Report 611405-S-V2

Project name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Aug 08, 2018

Client Sample ID Sample Matrix			GHD-BH2_16- 16.45 Soil	GHD- BH2_17.5- 17.77 Soil	GHD-BH2_19- 19.45 Soil	GHD-BH2_22- 22.45 Soil
Eurofins mgt Sample No.			B18-Au10547	B18-Au10548	B18-Au10549	B18-Au10550
Date Sampled			Jul 17, 2018	Jul 17. 2018	Jul 17. 2018	Jul 17. 2018
,	LOD	l lait	Jul 17, 2010	Jul 17, 2010	Jul 17, 2010	Jul 17, 2010
Test/Reference SPOCAS Suite	LOR	Unit				
	0.4		5.0	5.0	F.0	1.1
pH-KCL	0.1	pH Units		5.3	5.6	4.1
pH-OX Acid trail - Titratable Actual Acidity	0.1	pH Units mol H+/t	2.6 8.5	9.2	3.8	1.6 150
Acid trail - Titratable Actual Acidity Acid trail - Titratable Peroxide Acidity	2			69	22	
Acid trail - Titratable Peroxide Acidity Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	1	62	22	2500 2400
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	0.24
sulfidic - TPA equiv. 5% pyrite	0.02	% pyrite S		0.11	0.02	4.0
sulfidic - TSA equiv. 5% pyrite	0.02	% pyrite S		0.10	0.04	3.8
Sulfur - KCl Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	0.21
Sulfur - Peroxide	0.02	% S	0.24	0.09	0.03	3.6
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	0.24	0.09	0.03	3.3
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	i -	58	17	2100
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	0.21
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	< 0.02
Net Acid soluble sulfur - acidity units	10	mol H+/t		n/a	n/a	< 10
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	< 0.02
Calcium - KCI Extractable	0.02	% Ca	0.03	0.04	0.02	0.10
Calcium - Peroxide	0.02	% Ca	0.03	0.05	0.02	0.09
Acid Reacted Calcium	0.02	% Ca	< 0.02	< 0.02	< 0.02	-0.01
acidity - Acid Reacted Calcium	10	mol H+/t	< 10	< 10	< 10	-7
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	-0.01
Magnesium - KCI Extractable	0.02	% Mg	0.04	0.05	0.03	0.10
Magnesium - Peroxide	0.02	% Mg	0.04	0.05	0.03	0.10
Acid Reacted Magnesium	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t	< 10	< 10	< 10	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	%CaCO3	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite(s-ANCE)	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	0.25	0.10	0.03	3.6
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	160	65	17	2200
SPOCAS - Liming rate	1	kg CaCO3/t	12	5.0	1.0	170

Client Sample ID			GHD-BH2_16- 16.45	GHD- BH2_17.5- 17.77	GHD-BH2_19- 19.45	GHD-BH2_22- 22.45
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			B18-Au10547	B18-Au10548	B18-Au10549	B18-Au10550
Date Sampled			Jul 17, 2018	Jul 17, 2018	Jul 17, 2018	Jul 17, 2018
Test/Reference	LOR	Unit				
Chromium Suite		•				
pH-KCL	0.1	pH Units	5.3	5.3	5.6	4.1
Acid trail - Titratable Actual Acidity	2	mol H+/t	8.5	9.2	3.7	150
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	0.24
Chromium Reducible Sulfur ^{S04}	0.005	% S	0.20	0.066	0.017	2.9
Chromium Reducible Sulfur -acidity units	3	mol H+/t	120	41	11	1800
Sulfur - KCI Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	0.21
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	0.21
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	< 0.02
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	< 10
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	< 0.02
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) $^{\rm S03}$	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	0.19	0.07	0.02	3.2
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	130	50	14	2000
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	9.8	3.8	1.1	150
Extraneous Material						
<2mm Fraction	0.005	g	52	42	34	59
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	1		24	19	17	27

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
SPOCAS Suite SPOCAS Suite	Brisbane	Aug 09, 2018	6 Week
- Method: LTM-GEN-7050			
Chromium Reducible Sulfur Suite			
Chromium Suite	Brisbane	Aug 13, 2018	6 Week
- Method: LTM-GEN-7070			
Extraneous Material	Brisbane	Aug 09, 2018	6 Week
- Method: LTM-GEN-7050/7070			
% Moisture	Brisbane	Aug 09, 2018	14 Day

⁻ Method: LTM-GEN-7080 Moisture

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Aug 8, 2018 4:02 PM

Aug 15, 2018

5 Day

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425

 Report #:
 611405

 Phone:
 02 9239 7100

 Fax:
 02 9239 7199

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			SPOCAS Suite	Chromium Reducible Sulfur Suite	Moisture Set
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271				
Sydi	ney Laboratory	- NATA Site # 1	8217					
Bris	bane Laboratory	y - NATA Site #	20794			Х	Х	Х
	h Laboratory - N		36					
	rnal Laboratory				1			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	GHD-BH2_16- 16.45	Jul 17, 2018		Soil	B18-Au10547	Х	Х	Х
2	GHD- BH2_17.5- 17.77	Jul 17, 2018		Soil	B18-Au10548	х	х	х
3	GHD-BH2_19- 19.45	Jul 17, 2018		Soil	B18-Au10549	Х	Х	х
4	GHD-BH2_22- 22.45	Jul 17, 2018		Soil	B18-Au10550	Х	х	х
Test	Counts					4	4	4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 611405-S-V2

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Chromium Suite									
Chromium Reducible Sulfur			%	99			70-130	Pass	
Acid Neutralising Capacity (ANCbt)			%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1				
SPOCAS Suite		ı	ı	Result 1	Result 2	RPD			
pH-KCL	M18-Au09044	NCP	pH Units	4.9	5.0	<1	30%	Pass	
pH-OX	B18-Au13733	NCP	pH Units	3.0	3.0	1.0	30%	Pass	
Acid trail - Titratable Actual Acidity	M18-Au09044	NCP	mol H+/t	27	26	1.7	30%	Pass	
Acid trail - Titratable Peroxide Acidity	B18-Au13733	NCP	mol H+/t	160	160	1.0	30%	Pass	
Acid trail - Titratable Sulfidic Acidity	B18-Au13733	NCP	mol H+/t	120	120	1.0	30%	Pass	
sulfidic - TAA equiv. S% pyrite	M18-Au09044	NCP	% pyrite S	0.04	0.04	2.0	30%	Pass	
sulfidic - TPA equiv. S% pyrite	B18-Au13733	NCP	% pyrite S	0.26	0.26	1.0	30%	Pass	
sulfidic - TSA equiv. S% pyrite	B18-Au13733	NCP	% pyrite S	0.19	0.19	1.0	30%	Pass	
Sulfur - KCl Extractable	B18-Au13733	NCP	% S	0.09	0.09	1.0	30%	Pass	
Sulfur - Peroxide	B18-Au13733	NCP	% S	0.19	0.20	4.0	30%	Pass	
Sulfur - Peroxide Oxidisable Sulfur	B18-Au13733	NCP	% S	0.10	0.11	9.0	30%	Pass	
acidity - Peroxide Oxidisable Sulfur	B18-Au13733	NCP	mol H+/t	62	68	9.0	30%	Pass	
HCl Extractable Sulfur	B18-Au13733	NCP	% S	0.28	0.27	2.0	30%	Pass	
Net Acid soluble sulfur	B18-Au13733	NCP	% S	0.19	0.19	3.0	30%	Pass	
Net Acid soluble sulfur - acidity units	B18-Au13733	NCP	mol H+/t	89	87	3.0	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	B18-Au13733	NCP	% S	0.14	0.14	3.0	30%	Pass	
Calcium - KCl Extractable	B18-Au13733	NCP	% Ca	0.16	0.16	3.0	30%	Pass	
Calcium - Peroxide	B18-Au13733	NCP	% Ca	0.15	0.17	8.0	30%	Pass	
Acid Reacted Calcium	B18-Au13733	NCP	% Ca	< 0.02	< 0.02	<1	30%	Pass	
sulfidic - Acid Reacted Ca equiv. S% pyrite	B18-Au13733	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
Magnesium - KCl Extractable	B18-Au13733	NCP	% Mg	0.06	0.06	1.0	30%	Pass	
Magnesium - Peroxide	B18-Au13733	NCP	% Mg	0.06	0.06	7.0	30%	Pass	
Acid Reacted Magnesium	B18-Au13733	NCP	% Mg	< 0.02	< 0.02	<1	30%	Pass	
sulfidic - Acid Reacted Mg equiv. S% pyrite	B18-Au13733	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
Acid Neutralising Capacity (ANCE)	B18-Au13733	NCP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - Acidity units (a-ANCE)	B18-Au13733	NCP	mol H+/t	n/a	n/a	n/a	30%	Pass	
ANC Fineness Factor	M18-Au09044	NCP	factor	1.5	1.5	<1	30%	Pass	
SPOCAS - Liming rate	B18-Au13733	NCP	kg CaCO3/t	15	15	2.0	30%	Pass	
Duplicate					·				
Chromium Suite				Result 1	Result 2	RPD			
Chromium Reducible Sulfur	M18-Au09044	NCP	% S	0.029	0.027	6.0	30%	Pass	
Chromium Reducible Sulfur -acidity units	M18-Au09044	NCP	mol H+/t	18	17	6.0	30%	Pass	
Acid Neutralising Capacity (ANCbt)	M18-Au09044	NCP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt)	M18-Au09044	NCP	% S	n/a	n/a	n/a	30%	Pass	
CRS Suite - Net Acidity (Sulfur Units)	M18-Au09044	NCP	% S	0.07	0.07	n/a	30%	Pass	
CRS Suite - Net Acidity (Acidity Units)	M18-Au09044	NCP	mol H+/t	45	43	n/a	30%	Pass	
CRS Suite - Liming Rate	M18-Au09044	NCP	kg CaCO3/t	3.4	3.2	4.0	30%	Pass	

Duplicate									
				Result 1	Result 2	RPD			
% Moisture	P18-JI04806	NCP	%	25	25	1.0	30%	Pass	

Comments

New version to amend IDs.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

<u> </u>	
Code	Description

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'

S01

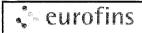
Retained Acidity is Reported when the pHKCl is less than pH $4.5\,$ S02

Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 S03 S04 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period

Authorised By

Nibha Vaidya Analytical Services Manager Steven Trout Senior Analyst-Metal (QLD)

Glenn Jackson


National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Ingit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallate to meet deadlines and lots production arising from this report. This document shall be reported everyein full and are fetted send yet of the liable to meet when the sindle and otherwise, the tests were performed on the samples as received.

Sydney
Unit F3 - 6 Building F, 16 Mars Road, Lane Cove
Phone: +612 9900 8400

Email: enviro.syd@mgtlabmark.com.au

Brisbane

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600

Email: enviro.bris@mqtlabmark.com.au

Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090

Email: enquiries.melb@mgtlabmark.com.au

												CH	AIN	OF	CL	JST	(e)D	YF	ΕŒ	OR	B										
CLIENT	DETAILS																											Pa	ge1_	of1	
Compa	ny Name : GHD Pty Ltd			Co	ntact	Name	: Clifto	n Tho	npsoc	on							Purcha	se Ord	ler : 2	127425	5					,	COC Num	ber : 5			
Office A	Address:			Pro	oject N	/lanage	er : Jus	tin Ka	bat								PROJE	CT Nu	mber	: 2127	425						Eurofins	mgt quot	e ID : 170	B08GHDN	
Le	evel 15, 133 Castlereagh Stree	t, Sydney NS	W 2000	En	nail for	result	ts : clif	ton.th	omps	on@gh	d.com						PROJE	CT Na	me : S	Scotlan	ıd İs	land Ene	gy Reliab	lity Projec	:t	· · · · · · · · · · · · · · · · · · ·	Data outp	ut format:	Esdat, Pl	OF .	
			,			**************************************						Ana	lytes			•		•						Sor		on holding or further in				ion).	
Special	Directions & Comments :			2004	als)						Ú													Waters					Sc	oils	
				24-2	(TRH/PAH/BTEXN/8 metals)						ш	ΙŠ										BTEX	MAH, VO	С		14 days	BTEX	MAH, VO	?		14 days
Special	Directions & Comments :			7648	8						H.	pHfox)						Ì		1 1		TRH,	PAH, Pher	ols, Pestic	ides	7 days		PAH, Phen		ides	14 days
'in lack	has samples frozen oversight	and been on	ion all atha	, (e)	Ì		- 1				te (l p										Heavy	Metals			6 months		Metals			6 months
	bag samples frozen overnight Please freeze zip lock bags for										Suite (pH,	vity, S04) Screen (pHf and										Mercu	ry, CrVI			28 days		ry, CrVI			28 days
	Thanks			aps	P	PCB						ᅴ핕						ŀ				Microl	oiological te	sting		24 hours		iological te	sting		72 hours
				lce/	14	I ~ I			62-92		ŠŠiŠ	9 ne										BOD,	Nitrate, Nit	rite, Total I	V	2 days	Anions				28 days
				ese	ΙĮΞ	OCP			ပြိ		Je j	Z. S.						İ				Solids	- TSS, TD	S etc		7 days	SPOC	AS, pH Fie	ld and FO	X, CrS	24 hours
F	mgt DI water batch number:		•	j O	15	0			TPH		Aggressivity 3	N S										Ferro	is iron			7 days	ASLP,	TCLP			7 days
Euroins	Higt of water batch fluither.			O SC	B7	B13	1 6	2	1		[2]	<u>e</u> <u>g</u>																			
	Sample ID	Date	Matrix	Asbest	Suite	Suite	1 6	o metals BTEX	BTEX/	TCLP	Suite	¥ <u>+</u>										Containe	rs:							Sample com	monts:
	Sample 15	Date	WIGHTA	Ask	Su	l S	0	9 B	BT		Su	5 E										1LP	250P	125P	1LA	40mL vial	125mL A	Jar	bag	campic con	ments.
1	GHD-BH1_0_0.1	8/08/2018	soil									X																1	1		
2	GHD-BH1_0.5_0.6	8/08/2018	soil	X	X	X						X																1	1		
3	GHD-BH1_1.0_1.45	8/08/2018	soil									X																1	1		
4	GHD-BH1_2.0_2.1	8/08/2018	soil		X							<u> </u>	<u> </u>			1				\perp								1	1		
5	GHD-BH1_3.0_3.1	8/08/2018	soil			1						X	11							$\perp \perp$		<u></u>				ļ		1	1		
6	GHD-BH1_3.9_4.0	8/08/2018	soil	_	ļ				ļ			<u> </u>	<u> </u>			1_1		Д_	_	\perp						ļ		1	1		
7	GHD-BH1_4.9_5.0	8/08/2018	soil	┵								X	\perp		_					$\perp \perp$						<u> </u>		1	1		
8	RIN2	8/08/2018	soil	4						\perp		_	$\perp \perp$					4-		1						ļ	1				
9	DUP03	8/08/2018	soil	4_	<u> X</u>	X						_			_			_	-	1						 		1			
10	DUP04	8/08/2018	soil	4		1		- -	-	\vdash	+	+				├ ─┤			<u> </u>									1			
11				-		\vdash				 -			-		_	1 1	_		╂	-									·····		
12		,		-	-	+-+		_	1	-	_	_	\perp			+			ļ	\perp		<u> </u>									
13				_	+	11		-							╀	\Box	_	+	-	\vdash						ļ					
14				- -		+			+	-	_	+	+		-	+			╂												
15				+	-	+		+	-	-			╁━┼		+	+	-	+	 	╁╌┼						 					
16				_ i		<u> </u>				1		+-			Tu	rn aro	und tin	16	Ь						1		4			Temperature on a	arrival:
Relinqu	ished By: Clifton Thompsor		Rece	ived l	Ву:	7	aborato	y Su	11T * 	7		┪								- 4 . 4.		Пс	ourier		Method C	f Shipmen				-2.9	
Date &	Time : 07:00 9/8/18		Date	& Tin	ne :	·() 6	7 W.	? ! #!		* <u>.</u> 8/1			\Y □		AY [3 DAY					☑ на	and Delive ostal	r ed						Report number:	
Signatu	ire:		Sign	ature:	: M	1	V	.,	7		***************************************]° D/	u 🗹	101	DAY	لــا	Other:					Courier C	onsignme	ent # :							

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: **GHD Pty Ltd NSW**

Contact name: Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Aug 9, 2018 9:40 AM Date/Time received:

Eurofins | mgt reference: 611464

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 0.00 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Certificate of Analysis

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson Report 611464-AID

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

 Project ID
 2127425

 Received Date
 Aug 09, 2018

 Date Reported
 Aug 16, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 611464-AID

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 7

Report Number: 611464-AID

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425

Date Reported: Aug 16, 2018

Date Sampled Aug 08, 2018 Report 611464-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
GHD-BH1_0.5-0.6	18-Au11035	Aug 08, 2018	Sample consisted of: Brown fine grain sandy soil	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Sample History

Date Reported: Aug 16, 2018

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyAug 09, 2018Indefinite

Page 3 of 7

Report Number: 611464-AID

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne

Site # 1254 & 14271

Oakleigh VIC 3166
Phone: +61 3 8564 5000
NATA # 1261

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name:

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Order No.: 2127425 Report #: 611464 Phone: 02 9239 7100

Fax:

02 9239 7199

Received: Aug 9, 2018 9:40 AM **Due:** Aug 16, 2018

Priority: 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
	ourne Laborato			271		Х	Х		Х	Х	Х
	ney Laboratory bane Laboratory					^	^	Х	^	^	\vdash
	h Laboratory - N										
	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	GHD-BH1_0- 0.1	Aug 08, 2018		Soil	S18-Au11034			Х			
2	GHD- BH1_0.5-0.6	Aug 08, 2018		Soil	S18-Au11035	х		Х	х	Х	х
3	GHD- BH1_1.0-1.45	Aug 08, 2018		Soil	S18-Au11036			Х			
4	GHD- BH1_2.0-2.1	Aug 08, 2018		Soil	S18-Au11037			Х		Х	х
5	GHD- BH1_3.0-3.1	Aug 08, 2018		Soil	S18-Au11038			Х			
6	GHD-	Aug 08, 2018		Soil	S18-Au11039			Х			

Page 4 of 7

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane 16 Mars Road Lane Cove West NSW 2066

Received:

Priority:

Due:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Aug 9, 2018 9:40 AM

Aug 16, 2018

5 Day

Company Name:

GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: Project ID:

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

2127425

Phone: 02 9239 7100 Fax: 02 9239 7199

2127425

611464

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - AS4964	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
		ory - NATA Site		271							
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х		Х	Х	Х
Brisl	bane Laborator	y - NATA Site #	20794					Х			
Pertl	h Laboratory - N	NATA Site # 237	36								
	BH1_3.9-4.0										
7	GHD- BH1_4.9-5.0	Aug 08, 2018		Soil	S18-Au11040			Х			
8	DUP03	Aug 08, 2018		Soil	S18-Au11041				Х	Х	Х
9	RIN2	Aug 08, 2018		Water	S18-Au11042		Χ				
10	DUP04	Aug 08, 2018		Soil	S18-Au11043		Х				
Test	Counts					1	2	7	2	3	3

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Aug 16, 2018

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 611464-AID

Comments

The sample received was not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-sample to be analysed accurately represented the sample received.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 611464-AID

⁻ Indicates Not Requested

^{*} Indicates NATA accreditation does not cover the performance of this service

Certificate of Analysis

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Clifton Thompson

Report 611464-S

Project name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Aug 09, 2018

Client Sample ID			GHD-BH1_0- 0.1	GHD-BH1_0.5- 0.6	GHD-BH1_1.0- 1.45	GHD-BH1_2.0- 2.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au11034	S18-Au11035	S18-Au11036	S18-Au11037
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions	•				
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	< 50	-	< 50
TRH C29-C36	50	mg/kg	-	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	< 50
BTEX	•					
Benzene	0.1	mg/kg	-	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	66	-	54
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg	-	< 100	-	< 100
TRH >C34-C40	100	mg/kg	-	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	-	< 0.5

Report Number: 611464-S

Client Sample ID			GHD-BH1_0- 0.1	GHD-BH1_0.5- 0.6	GHD-BH1_1.0- 1.45	GHD-BH1_2.0- 2.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au11034	S18-Au11035	S18-Au11036	S18-Au11037
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010	Aug 00, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Offic				
	0.5			.0.5		.0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	1.0	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg		< 0.5		< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	-	0.9	-	< 0.5
Total PAH*	0.5	mg/kg	-	1.9	=	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	120	=	113
p-Terphenyl-d14 (surr.)	1	%	-	129	-	119
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	=	-
Endosulfan I	0.05	mg/kg	-	< 0.05	=	-
Endosulfan II	0.05	mg/kg	-	< 0.05	=	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	=	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	_	86	_	_
Tetrachloro-m-xylene (surr.)	1	%	_	87	_	_
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	_
Aroclor-1221	0.1	mg/kg	_	< 0.1	_	_
Aroclor-1221 Aroclor-1232	0.5	mg/kg	-	< 0.5	-	_
Aroclor-1232 Aroclor-1242	0.5	mg/kg	-	< 0.5	-	_
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	_
Aroclor-1254	0.5	mg/kg		< 0.5	-	
	0.5		-	< 0.5		-
Aroclor-1260		mg/kg	-		-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	86	-	-

Client Sample ID			GHD-BH1_0- 0.1	GHD-BH1_0.5- 0.6	GHD-BH1_1.0- 1.45	GHD-BH1_2.0- 2.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au11034	S18-Au11035	S18-Au11036	S18-Au11037
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	-	7.8	-	5.8
Cadmium	0.4	mg/kg	-	< 0.4	-	< 0.4
Chromium	5	mg/kg	=	9.9	-	5.4
Copper	5	mg/kg	=	< 5	-	< 5
Lead	5	mg/kg	=	< 5	-	8.1
Mercury	0.1	mg/kg	-	< 0.1	-	< 0.1
Nickel	5	mg/kg	-	< 5	-	< 5
Zinc	5	mg/kg	=	11	-	10
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.2	8.6	9.0	8.8
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.8	9.3	9.5	7.5
Reaction Ratings*S05		comment	3.0	4.0	4.0	4.0
% Moisture	1	%	-	11	-	21

Client Sample ID			GHD-BH1_3.0-	GHD-BH1_3.9-	GHD-BH1_4.9-		
•			3.1 4	4.0	5.0	DUP03	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S18-Au11038	S18-Au11039	S18-Au11040	S18-Au11041	
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions						
TRH C6-C9	20	mg/kg	-	-	-	< 20	
TRH C10-C14	20	mg/kg	-	-	-	< 20	
TRH C15-C28	50	mg/kg	-	-	-	< 50	
TRH C29-C36	50	mg/kg	-	-	-	< 50	
TRH C10-36 (Total)	50	mg/kg	-	-	-	< 50	
BTEX							
Benzene	0.1	mg/kg	-	-	-	< 0.1	
Toluene	0.1	mg/kg	-	-	-	< 0.1	
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1	
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2	
o-Xylene	0.1	mg/kg	-	-	-	< 0.1	
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	-	-	-	61	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions						
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5	
TRH C6-C10	20	mg/kg	-	-	-	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20	
TRH >C10-C16	50	mg/kg	-	-	-	< 50	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	-	< 50	
TRH >C16-C34	100	mg/kg	-	-	-	< 100	
TRH >C34-C40	100	mg/kg	-	-	-	< 100	
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	< 100	

Client Sample ID			GHD-BH1_3.0- 3.1	GHD-BH1_3.9- 4.0	GHD-BH1_4.9- 5.0	DUP03	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.		S1		S18-Au11039	S18-Au11040	S18-Au11041	
Date Sampled			Aug 08, 2018	Aug 08, 2018		Aug 08, 2018	
•			Aug 06, 2016	Aug 06, 2016	Aug 08, 2018	Aug 08, 2016	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons		1					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2	
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5	
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5	
Anthracene	0.5	mg/kg	-	-	-	< 0.5	
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5	
Chrysene	0.5	mg/kg	-	-	-	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5	
Fluoranthene	0.5	mg/kg	-	-	-	0.8	
Fluorene	0.5	mg/kg	-	-	-	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	=	=	=	< 0.5	
Naphthalene	0.5	mg/kg	=	=	=	< 0.5	
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5	
Pyrene	0.5	mg/kg	-	-	-	0.7	
Total PAH*	0.5	mg/kg	-	-	-	1.5	
2-Fluorobiphenyl (surr.)	1	%	-	-	-	113	
p-Terphenyl-d14 (surr.)	1	%	-	-	-	121	
Organochlorine Pesticides	•						
Chlordanes - Total	0.1	mg/kg	-	-	=	< 0.1	
4.4'-DDD	0.05	mg/kg	-	-	=	< 0.05	
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05	
4.4'-DDT	0.05	mg/kg	_	-	-	< 0.05	
a-BHC	0.05	mg/kg	_	_	_	< 0.05	
Aldrin	0.05	mg/kg	_	_	-	< 0.05	
b-BHC	0.05	mg/kg	_	_	_	< 0.05	
d-BHC	0.05	mg/kg	_	_	-	< 0.05	
Dieldrin	0.05	mg/kg	-	-	-	< 0.05	
Endosulfan I	0.05	mg/kg	_	_	_	< 0.05	
Endosulfan II	0.05	mg/kg	_	_	_	< 0.05	
Endosulfan sulphate	0.05	mg/kg	_	_	_	< 0.05	
Endrin	0.05	mg/kg	_	_	_	< 0.05	
Endrin aldehyde	0.05	mg/kg	_	_	-	< 0.05	
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05	
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05	
Heptachlor	0.05	mg/kg	-	-	-	< 0.05	
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05	
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05	
Methoxychlor	0.05	mg/kg	-	-	-	< 0.05	
-	1					< 0.2	
Toxaphene		mg/kg	-	-	-		
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05	
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05	
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 0.1	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	< 0.1	
Dibutylchlorendate (surr.)	1	%	-	-	-	97	

Client Sample ID			GHD-BH1_3.0- 3.1	GHD-BH1_3.9- 4.0	GHD-BH1_4.9- 5.0	DUP03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Au11038	S18-Au11039	S18-Au11040	S18-Au11041
Date Sampled			Aug 08, 2018	Aug 08, 2018	Aug 08, 2018	Aug 08, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB*	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	97
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	99
Heavy Metals						
Arsenic	2	mg/kg	-	-	-	8.0
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-	-	-	11
Copper	5	mg/kg	-	-	-	5.2
Lead	5	mg/kg	-	-	-	< 5
Mercury	0.1	mg/kg	-	-	-	< 0.1
Nickel	5	mg/kg	-	-	-	< 5
Zinc	5	mg/kg	-	-	-	12
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.7	6.0	7.9	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	8.4	7.2	8.9	-
D (' D (' +\$05		comment	4.0	2.0	4.0	-
Reaction Ratings*S05						

Report Number: 611464-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Passy archia Undescribera 4000 NEDM Fractions	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 13, 2018	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010	October	A 40, 0040	44.0
BTEX	Sydney	Aug 13, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 13, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 13, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 13, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Aug 13, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Aug 13, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Aug 13, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Acid Sulfate Soils Field pH Test	Brisbane	Aug 10, 2018	7 Days
- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
% Moisture	Sydney	Aug 09, 2018	14 Day

Report Number: 611464-S

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425
 Received:
 Aug 9, 2018 9:40 AM

 Report #:
 611464
 Due:
 Aug 16, 2018

 Phone:
 02 9239 7100
 Priority:
 5 Day

02 9239 7199 Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
		Х	X								
Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794									Х	Х	X
								Х			
	rnal Laboratory	NATA Site # 237 /	30								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	GHD-BH1_0- 0.1	Aug 08, 2018		Soil	S18-Au11034			Х			
2	GHD- BH1_0.5-0.6	Aug 08, 2018		Soil	S18-Au11035	Х		Х	Х	Х	х
3	GHD- BH1_1.0-1.45	Aug 08, 2018		Soil	S18-Au11036			Х			
4	GHD- BH1_2.0-2.1	Aug 08, 2018		Soil	S18-Au11037			Х		Х	х
5	GHD- BH1_3.0-3.1	Aug 08, 2018		Soil	S18-Au11038			Х			
6	GHD-	Aug 08, 2018		Soil	S18-Au11039			Х			

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 7 of 13

Date Reported:Aug 16, 2018

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Project Name:

Order No.: 2127425 Received: Aug 9, 2018 9:40 AM Report #: 611464 Due: Aug 16, 2018 Phone: 02 9239 7100 Priority: 5 Day **Contact Name:** Clifton Thompson Fax: 02 9239 7199

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail						Asbestos - AS4964	HOLD	Acid Sulfate Soils Field pH Test	Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271							
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х		Х	Χ	Χ
Bris	bane Laboratory	y - NATA Site #	20794					Х			
Pert	h Laboratory - N	NATA Site # 237	36								
	BH1_3.9-4.0										
7	GHD- BH1_4.9-5.0	Aug 08, 2018		Soil	S18-Au11040			Х			
8	DUP03	Aug 08, 2018		Soil	S18-Au11041				Х	Х	Х
9	RIN2	Aug 08, 2018		Water	S18-Au11042		Х				
10	DUP04	Aug 08, 2018		Soil	S18-Au11043		Х				
Test	est Counts							7	2	3	3

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 9 of 13

ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 611464-S

Quality Control Results

mg/kg mg/kg	< 0.1 < 0.05 <	0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass		
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05 0.05	Pass Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05 0.05	Pass Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05		0.05 0.05	Pass	
mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05		0.05		
mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05			Pass	
mg/kg mg/kg mg/kg	< 0.05			1 1 433	1
mg/kg mg/kg			0.05	Pass	
mg/kg			0.05	Pass	
	< 0.05		0.05	Pass	
			1		
1gg	7.		·		
ma/ka	< 0.5		0.5	Pass	
ı mg/ng	10.0		0.0	1 400	
%	85		70-130	Pass	
	1				
	1				
	1	+			
		+			
		+			
	†				
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % % % % % % % % % % % % % % % % %	mg/kg < 0.05	mg/kg < 0.05	mg/kg < 0.05	mg/kg < 0.05 Pass mg/kg < 0.05

							A	D	O !!f!
Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene			%	95			70-130	Pass	
Methoxychlor			%	89			70-130	Pass	
LCS - % Recovery									
Polychlorinated Biphenyls									
Aroclor-1260		1	%	87			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					1		ı		
Organochlorine Pesticides		1		Result 1					
4.4'-DDE	S18-Au11041	CP	%	96			70-130	Pass	
a-BHC	S18-Au11041	CP	%	93			70-130	Pass	
Aldrin	S18-Au11041	CP	%	94			70-130	Pass	
b-BHC	S18-Au11041	CP	%	88			70-130	Pass	
d-BHC	S18-Au11041	CP	%	91			70-130	Pass	
Dieldrin	S18-Au11041	CP	%	96			70-130	Pass	
Endosulfan I	S18-Au11041	CP	%	94			70-130	Pass	
Endosulfan II	S18-Au11041	CP	%	95			70-130	Pass	
Endosulfan sulphate	S18-Au11041	CP	%	86			70-130	Pass	
Endrin	S18-Au11041	CP	%	92			70-130	Pass	
Endrin aldehyde	S18-Au11041	CP	%	86			70-130	Pass	
g-BHC (Lindane)	S18-Au11041	CP	%	86			70-130	Pass	
Heptachlor epoxide	S18-Au11041	CP	%	94			70-130	Pass	
Hexachlorobenzene	S18-Au11041	CP	%	96			70-130	Pass	
Spike - % Recovery				D It 4					
Polychlorinated Biphenyls	C40 A44044	CD	0/	Result 1			70.400	Dana	
Aroclor-1260	S18-Au11041	CP QA	%	89			70-130	Pass Pass	Ouglifying
Test	Lab Sample ID	Source	Units	Result 1			Acceptance Limits	Limits	Qualifying Code
D Parata									
Duplicate									
Duplicate Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
	M18-Au10016	NCP	pH Units	Result 1	Result 2	RPD pass	30%	Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings*	M18-Au10016 M18-Au10016	NCP NCP	pH Units				30%	Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate	M18-Au10016	NCP	•	8.1	8.2 4.0	pass			
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons	M18-Au10016	NCP	•	8.1 4.0 Result 1	8.2 4.0 Result 2	pass	30%	Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9	M18-Au10016 s - 1999 NEPM Fract S18-Au15303	NCP	comment mg/kg	8.1 4.0 Result 1 < 20	8.2 4.0 Result 2 < 20	pass pass	30%		
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14	M18-Au10016 s - 1999 NEPM Fract S18-Au15303 S18-Au14513	NCP NCP NCP	mg/kg mg/kg	8.1 4.0 Result 1 < 20 25	8.2 4.0 Result 2 < 20 27	pass pass RPD <1 5.0	30% 30% 30%	Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513	NCP NCP NCP	mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130	8.2 4.0 Result 2 < 20 27 150	pass pass RPD <1 5.0 14	30% 30% 30% 30%	Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36	M18-Au10016 s - 1999 NEPM Fract S18-Au15303 S18-Au14513	NCP NCP NCP	mg/kg mg/kg	8.1 4.0 Result 1 < 20 25	8.2 4.0 Result 2 < 20 27	pass pass RPD <1 5.0	30% 30% 30%	Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au14513	NCP NCP NCP	mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260	8.2 4.0 Result 2 < 20 27 150 230	pass pass RPD <1 5.0 14 13	30% 30% 30% 30%	Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons	M18-Au10016 S - 1999 NEPM Fract \$18-Au15303 \$18-Au14513 \$18-Au14513 \$18-Au14513	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260	8.2 4.0 Result 2 < 20 27 150 230	pass pass RPD <1 5.0 14 13 RPD	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Benz(a)anthracene	M18-Au10016 S - 1999 NEPM Fract \$18-Au15303 \$18-Au14513 \$18-Au14513 \$18-Au14513 \$18-Au10960	NCP ions NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Benz(a)anthracene Benzo(a)pyrene	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au14513 ns S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Benz(a)anthracene Benzo(b&j)fluoranthene	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene Duplicate	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene Duplicate Organochlorine Pesticides	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Result 1	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <rpd <rpd<="" td=""><td>30% 30% 30% 30% 30% 30% 30% 30%</td><td>Pass Pass Pass Pass Pass Pass Pass Pass</td><td></td></rpd>	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene Duplicate Organochlorine Pesticides Chlordanes - Total	M18-Au10016 S - 1999 NEPM Fract \$18-Au15303 \$18-Au14513 \$18-Au14513 \$18-Au14513 S18-Au10960 \$18-Au10960 \$18-Au10960 \$18-Au10960 \$18-Au10960 \$18-Au10960 \$18-Au10960 \$18-Au10960 \$18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8.2 4.0 Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP NCP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acid Sulfate Soils Field pH Test pH-F (Field pH test)* Reaction Ratings* Duplicate Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbons Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Dibenz(a.h)anthracene Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	M18-Au10016 S - 1999 NEPM Fract S18-Au15303 S18-Au14513 S18-Au14513 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960 S18-Au10960	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.1 4.0 Result 1 < 20 25 130 260 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Result 2 < 20 27 150 230 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	pass pass RPD <1 5.0 14 13 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Report Number: 611464-S

Duplicate													
Organochlorine Pesticides				Result 1	Result 2	RPD							
d-BHC	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Dieldrin	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Endosulfan I	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Endosulfan II	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Endosulfan sulphate	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Endrin	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Endrin aldehyde	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Endrin ketone	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
g-BHC (Lindane)	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Heptachlor	S18-Au11035	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Heptachlor epoxide	S18-Au11035	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Hexachlorobenzene	S18-Au11035	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass					
Methoxychlor	S18-Au11035	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass					
Toxaphene	S18-Au11035	CP	mg/kg	< 1	< 1	<1	30%	Pass					
Duplicate													
Polychlorinated Biphenyls		Result 1	Result 2	RPD									
Aroclor-1016	S18-Au11035	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass					
Aroclor-1221	S18-Au11035	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass					
Aroclor-1232	S18-Au11035	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass					
Aroclor-1242	S18-Au11035	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass					
Aroclor-1248	S18-Au11035	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass					
Aroclor-1254	S18-Au11035	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass					
Aroclor-1260	S18-Au11035	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass					
Duplicate													
Heavy Metals				Result 1	Result 2	RPD							
Arsenic	M18-Au12942	NCP	mg/kg	**	**	19	30%	Pass					
Cadmium	M18-Au12942	NCP	mg/kg	**	**	<1	30%	Pass					
Chromium	M18-Au10739	NCP	mg/kg	**	**	1.0	30%	Pass					
Copper	M18-Au12942	NCP	mg/kg	**	**	<1	30%	Pass					
Lead	M18-Au12942	NCP	mg/kg	**	**	<1	30%	Pass					
Mercury	M18-Au12942	NCP	mg/kg	**	**	<1	30%	Pass					
Nickel	M18-Au10739	NCP	mg/kg	**	**	3.0	30%	Pass					
Zinc	M18-Au10739	NCP	mg/kg	**	**	2.0	30%	Pass					
Duplicate													
				Result 1	Result 2	RPD							
% Moisture	S18-JI26285	NCP	%	5.7	5.5	2.0	30%	Pass					

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction. S05

Authorised By

N02

Nibha Vaidya Analytical Services Manager Senior Analyst-Asbestos (NSW) Nibha Vaidya

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 611464-S

8	C	ro	Manager N	ns

Sydney

V Unit I

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove
Phone: +612 9900 8400
Email: enviro.syd@mgtlabmark.com.au

	ris		
ப	113	va	1115

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtlabmark.com.au

Me	lbo	urne	

2 Kingston Town Close, Oakleigh, VIC 3166
Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mqtlabmark.com.au

											C	HA	\prod	OF (T(8)DY	F.E	0.0	RΦ										
CLIEN	T DETAILS		A. 17-1-2-1-10 CONTACT - 1921 CO																								P	age1_	_ of1	
Compa	any Name : GHD Pty Ltd			Con	ntact I	Name :	Clifton	Thom	psoo	1		**************************************				Pui	rchase	Order	: 2127	425						COC Number : 6				
Office	Address :			Pro	ject N	lanage	r : Justi	n Kab	at					···-	•	PROJECT Number : 2127425								Eurofins mgt quote ID : 170808GHDN						
L	evel 15, 133 Castlereagh Street	, Sydney NS	SW 2000	Ema	ail for	r result	s : clifto	n.tho	mpso	n@ghd.d	com			*****		PR	OJECT	Name	: Scot	Scotland Island Energy Reliability Project							Data output format: Esdat, PDF			
				-	V							Analyte	s	.,							T		Sor			g times (with correct preservation).				
Specia	al Directions & Comments :			4	100	ТТ		Τ			1	Ť	1			1	\top	Т		1	Waters					iormation c	ontact the		oils	
				ence)-AS4964-2004	metals)						EC,										BTEX	, MAH, V			14 days	DIEV	, MAH, VO			44 15 5
	I Directions & Comments :			3496	18 18						Suite (pH, EC	pHfox)											nois, Pestic	ides	7 days	·		nols, Pestio	ides	14 days 14 days
	carry out these tests on the remains custodγ	naining samp	oles already in	(e) (A)	Ž						ite (힏									Heav	/ Metals			6 months	 	Metals			6 months
	,			senc	黑	_					Su	₽				ı					Merci	ıry, CrVI			28 days	Mercu	ry, CrVI		~~~	28 days
				qe/	\frac{1}{2}	OCP / PCB			6		4 kg	[희]										biological			24 hours	Microb	oiological te	esting		72 hours
				ance	ĮΨ	17			Q.		ssi S0	- 등 년	2									<u></u>	itrite, Total I	N	2 days	Anions	3		****	28 days
				rese	15	[방]			Ö		gre ₹	See 1	ź										7 days	SPOC	AS, pH Fi	eld and FO	X, CrS	24 hours		
Eurofin	s mgt DI water batch number:			آق [0	Suite B7 (TRH/PAH/BTEXN/8		(0		BTEX / TPH C6-C9		Suite L2 Aggressivity Cl, Resistivity, S04)	pH - Field Screen (pHf and	ğ g							Ferrous iron 7 days ASLP, TCLP				7 days						
				stos	e B	Suite B13	8 metals	×	×	Д.	e L2 Resi	کے اور	₹					-			Containe	rs:		•			***			
	Sample ID	Date	Matrix	Asbest	Suit	Suit	8 H	BTEX	BTE	TCLP	Suit CI,	됩	<u> </u>								1LP	250P	125P	1LA	40mL vial	125ml. A	Jar	bag	Sample con	nments:
1	GHD-BH02_22_22.45		soil		T)	X			T												1		
2	GHD-BH04_15_15.45		soil	Т				T)	X .															1		
3																														
4																														
5																										<u> </u>				
6																														
7								1													<u> </u>	<u></u>				<u> </u>				~~**
8				1																		ļ								
9								<u> </u>					\perp								<u> </u>									
10					<u> </u>							\perp																		
11				_				<u> </u>								_ _						ļ								·····
12						11						\vdash																		
13				1					Ш		<u> </u>											<u></u>			ļ			ļ		
14				_								\vdash														<u> </u>				
15				_	_				\sqcup							1							ļ			ļ				
16			L																					<u></u>			<u> </u>	<u> </u>	T	
						La	borator	y Staf	f	-			X-710-1		Turn	around	time							Method C	of Shipmer	nt			Temperature on	arrivai:
Relinq	uished By: Clifton Thompson		Receiv	ved B	sy:	٧Ļ	201	16	1			ļ	_				\Box				□ c	ourier								
Date &	· Time :		Date &	k Tim	e : -	11	V		. (*)	ANI	1	1 DAY	LJ	2 DA	Y [_]	3 D	AY [✓ Hand Delivered✓ Postal					Report number:			01	
Signature: Signatu			ture:	17/8 -060W s					5 DAY 🗸 10 DAY 🗋 Other:					Courier Consignment #:					36											

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: **GHD Pty Ltd NSW**

Contact name: Clifton Thompson

ADDITIONAL - SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Aug 14, 2018 1:06 PM Date/Time received:

Eurofins | mgt reference: 612636

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 5.3 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Certificate of Analysis

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Clifton Thompson

Report 612636-S

Project name ADDITIONAL - SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Aug 14, 2018

Client Sample ID Sample Matrix			GHD-BH2_22- 22.45 Soil	GHD- BH4_15.0_15.4 5 Soil
Eurofins mgt Sample No.			S18-Au20520	S18-Au20521
Date Sampled			Jul 17, 2018	Jul 17, 2018
Test/Reference	LOR	Unit		
SPOCAS Suite	•			
pH-KCL	0.1	pH Units	4.1	4.7
pH-OX	0.1	pH Units	1.6	3.6
Acid trail - Titratable Actual Acidity	2	mol H+/t	150	73
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	2500	170
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	2400	92
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	0.24	0.12
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	4.0	0.27
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	3.8	0.15
Sulfur - KCl Extractable	0.02	% S	0.21	0.03
Sulfur - Peroxide	0.02	% S	3.6	0.04
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	3.3	< 0.02
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	2100	< 10
HCI Extractable Sulfur	0.02	% S	0.21	n/a
Net Acid soluble sulfur	0.02	% S	< 0.02	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	< 10	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	< 0.02	n/a
Calcium - KCI Extractable	0.02	% Ca	0.10	0.04
Calcium - Peroxide	0.02	% Ca	0.09	0.04
Acid Reacted Calcium	0.02	% Ca	< 0.02	< 0.02
acidity - Acid Reacted Calcium	10	mol H+/t	< 10	< 10
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	< 0.02	< 0.02
Magnesium - KCI Extractable	0.02	% Mg	0.10	0.08
Magnesium - Peroxide	0.02	% Mg	0.10	0.07
Acid Reacted Magnesium	0.02	% Mg	< 0.02	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t	< 10	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	%CaCO3	n/a	n/a
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite(s-ANCE)	0.02	% S	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	3.6	0.13
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	2200	79
SPOCAS - Liming rate	1	kg CaCO3/t	170	6.0

Client Sample ID			GHD-BH2_22- 22.45	GHD- BH4_15.0_15.4 5
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S18-Au20520	S18-Au20521
Date Sampled			Jul 17, 2018	Jul 17, 2018
Test/Reference	LOR	Unit		
Chromium Suite		•		
pH-KCL	0.1	pH Units	4.1	4.7
Acid trail - Titratable Actual Acidity	2	mol H+/t	150	73
sulfidic - TAA equiv. S% pyrite	0.02	% pyrite S	0.24	0.12
Chromium Reducible Sulfur ^{S04}	0.005	% S	2.9	< 0.005
Chromium Reducible Sulfur -acidity units	3	mol H+/t	1800	< 3
Sulfur - KCl Extractable	0.02	% S	0.21	0.03
HCI Extractable Sulfur	0.02	% S	0.21	n/a
Net Acid soluble sulfur	0.02	% S	< 0.02	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	< 10	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	< 0.02	n/a
Acid Neutralising Capacity (ANCbt)	0.01	%CaCO3	n/a	n/a
Acid Neutralising Capacity - acidity (a-ANCbt)	2	mol H+/t	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt) ^{S03}	0.02	% S	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5
CRS Suite - Net Acidity (Sulfur Units)	0.02	% S	3.2	0.12
CRS Suite - Net Acidity (Acidity Units)	10	mol H+/t	2000	73
CRS Suite - Liming Rate ^{S01}	1	kg CaCO3/t	150	5.5
Extraneous Material				
<2mm Fraction	0.005	g	59	30
>2mm Fraction	0.005	g	< 0.005	< 0.005
Analysed Material	0.1	%	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1
% Moisture	1	%	27	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
SPOCAS Suite SPOCAS Suite	Brisbane	Aug 16, 2018	6 Week
- Method: LTM-GEN-7050	Brisbario	Aug 10, 2010	O WEEK
Chromium Reducible Sulfur Suite			
Chromium Suite	Brisbane	Aug 16, 2018	6 Week
- Method: LTM-GEN-7070			
Extraneous Material	Brisbane	Aug 16, 2018	6 Week
- Method: LTM-GEN-7050/7070			
% Moisture	Brisbane	Aug 16, 2018	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Report Number: 612636-S

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW Order No.: Received: Aug 14, 2018 1:06 PM

Address: Level 15, 133 Castlereagh Street Report #: 612636 Due: Aug 21, 2018

Sydney Phone: 02 9239 7100 Priority: 5 Day

NSW 2000 Fax: 02 9239 7199 **Contact Name:** Clifton Thompson

Project Name: Project ID: 2127425

		Sal	mple Detail			SPOCAS Suite	Chromium Reducible Sulfur Suite	Moisture Set
							Ifur Suite	
	ourne Laborato			271				
	ney Laboratory					.,		
	bane Laboratory					Х	Х	Х
	h Laboratory - N		36					
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	GHD-BH2_22- 22.45	Jul 17, 2018		Soil	S18-Au20520	Х	Х	х
2	GHD- BH4_15.0_15. 45	Jul 17, 2018		Soil	S18-Au20521	х	х	х
Test	Counts					2	2	2

ADDITIONAL - SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 4 of 7

Date Reported:Aug 21, 2018

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 5 of 7

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 612636-S

Quality Control Results

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
SPOCAS Suite				Result 1	Result 2	RPD			
pH-KCL	B18-Au13733	NCP	pH Units	4.5	4.5	<1	30%	Pass	
pH-OX	B18-Au13733	NCP	pH Units	3.0	3.0	1.0	30%	Pass	
Acid trail - Titratable Actual Acidity	B18-Au13733	NCP	mol H+/t	44	44	<1	30%	Pass	
Acid trail - Titratable Peroxide	D40 A42722	NCD		160	160	1.0	200/	Doos	
Acidity Acid trail - Titratable Sulfidic Acidity	B18-Au13733	NCP NCP	mol H+/t mol H+/t	160 120	160 120	1.0 1.0	30%	Pass Pass	
•	B18-Au13733	NCP							
sulfidic - TAA equiv. S% pyrite	B18-Au13733	t	% pyrite S	0.07	0.07	<1	30%	Pass	
sulfidic - TPA equiv. S% pyrite	B18-Au13733	NCP	% pyrite S	0.26	0.26	1.0	30%	Pass	
sulfidic - TSA equiv. S% pyrite	B18-Au13733	NCP	% pyrite S	0.19	0.19	1.0	30%	Pass	
Sulfur - KCl Extractable	B18-Au13733	NCP	% S	0.09	0.09	1.0	30%	Pass	
Sulfur - Peroxide	B18-Au13733	NCP	% S	0.19	0.20	4.0	30%	Pass	
Sulfur - Peroxide Oxidisable Sulfur	B18-Au13733	NCP NCP	% S	0.10	0.11	9.0	30%	Pass	
acidity - Peroxide Oxidisable Sulfur	B18-Au13733	NCP	mol H+/t % S	62	68	9.0	30%	Pass	
HCI Extractable Sulfur	B18-Au13733	NCP		0.28	0.27	2.0	30%	Pass	
Net Acid soluble sulfur Net Acid soluble sulfur - acidity	B18-Au13733	NCP	% S	0.19	0.19	3.0	30%	Pass	
units	B18-Au13733	NCP	mol H+/t	89	87	3.0	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	B18-Au13733	NCP	% S	0.14	0.14	3.0	30%	Pass	
Calcium - KCI Extractable	B18-Au13733	NCP	% Ca	0.16	0.16	3.0	30%	Pass	
Calcium - Peroxide	B18-Au13733	NCP	% Ca	0.15	0.17	8.0	30%	Pass	
Acid Reacted Calcium	B18-Au13733	NCP	% Ca	< 0.02	< 0.02	<1	30%	Pass	
acidity - Acid Reacted Calcium	B18-Au13733	NCP	mol H+/t	-2	< 10	1200	30%	Fail	
sulfidic - Acid Reacted Ca equiv. S% pyrite	B18-Au13733	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
Magnesium - KCI Extractable	B18-Au13733	NCP	% Mg	0.06	0.06	1.0	30%	Pass	
Magnesium - Peroxide	B18-Au13733	NCP	% Mg	0.06	0.06	7.0	30%	Pass	
Acid Reacted Magnesium	B18-Au13733	NCP	% Mg	< 0.02	< 0.02	<1	30%	Pass	
acidity - Acid Reacted Magnesium	B18-Au13733	NCP	mol H+/t	-1	< 10	590	30%	Fail	
sulfidic - Acid Reacted Mg equiv. S% pyrite	B18-Au13733	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
Acid Neutralising Capacity (ANCE)	B18-Au13733	NCP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - Acidity units (a-ANCE)	B18-Au13733	NCP	mol H+/t	n/a	n/a	n/a	30%	Pass	
ANC Fineness Factor	B18-Au13733	NCP	factor	1.5	1.5	<1	30%	Pass	
SPOCAS - Liming rate	B18-Au13733	NCP	kg CaCO3/t	15	15	2.0	30%	Pass	
Duplicate			J						
Chromium Suite				Result 1	Result 2	RPD			
Chromium Reducible Sulfur	M18-Au09044	NCP	% S	0.029	0.027	6.0	30%	Pass	
Chromium Reducible Sulfur -acidity units	M18-Au09044	NCP	mol H+/t	18	17	6.0	30%	Pass	
Acid Neutralising Capacity (ANCbt)	M18-Au09044	NCP	%CaCO3	n/a	n/a	n/a	30%	Pass	
Acid Neutralising Capacity - equivalent S% pyrite (s-ANCbt)	M18-Au09044	NCP	% S	n/a	n/a	n/a	30%	Pass	
CRS Suite - Net Acidity (Sulfur Units)	M18-Au09044	NCP	% S	0.07	0.07	n/a	30%	Pass	
CRS Suite - Net Acidity (Acidity Units)	M18-Au09044	NCP	mol H+/t	45	43	n/a	30%	Pass	
CRS Suite - Liming Rate	M18-Au09044	NCP	kg CaCO3/t	3.4	3.2	4.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

•	
Code	Description
Code	Describitori

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'

S01

S02 Retained Acidity is Reported when the pHKCl is less than pH $4.5\,$

S03 Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period S04

Authorised By

Nibha Vaidya Analytical Services Manager Steven Trout Senior Analyst-Metal (QLD)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

€	f =	
a 80	eurotins	
	2 WI O I II I 2	

Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400

Email: enviro.syd@mgtlabmark.com.au

Bris	b	a	n	4

Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtlabmark.com.au

84-1	<u></u>	irno
RAGI	nnı	irno

2 Kingston Town Close, Oakleigh, VIC 3166
Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mgtlabmark.com.au

			57								σ	HA	M	ΘF	اق	JST	OD	ΥR		0:	1										
CLIENT	DETAILS	A STATE OF THE PROPERTY OF THE PARTY OF THE	otorian potorina anni e e e e e e e e e e e e e e e e e e	2. 804345.63	and the second	a construction of the cons																						Pa	age1_	of1_	
Compa	ny Name : GHD Pty Ltd	·····		Con	tact N	lame :	Clifto	on Tho	mpso	оп				******		Purchase Order : 2127425								COC Number : 7							
Office A	Address :			Proj	ject M	anage	r : Ju	stin Ka	abat							PROJECT Number : 2127425 Eurofins mgt q						mgt quot	t quote ID : 170808GHDN								
Le	evel 15, 133 Castlereagh Stree	t, Sydney NS	W 2000	Ema	ail for	result	s:cli	fton.th	omps	on@ghd	.com					PROJECT Name : Scotland Island Energy Reliability Project						Data outp	ut format:	: Esdat, PD)F						
												Analyt	tes			Some common holding For further in								on).							
Special	Directions & Comments :			2004	(S)		Т	Т		П	Ú									П				Waters					So	oils	
				34-2	metals)						Ш	<u>x</u>										BTEX	MAH, VC	С		14 days	BTEX.	MAH, VO	C		14 days
				3496	8 11						E,	pHfox)										TRH,	PAH, Phe	nols, Pestic	ides	7 days			nols, Pestici	ides	14 days
				A.	Ž		- 1) Ee	힐										Heavy	Metals			6 months	Heavy	Metals			6 months
				ence	12						Suite	f a										Mercu	ry, CrVI			28 days	Mercu	ry, CrVI			28 days
				apse	18	8					<u>\$</u>	(pHf and										Micro	oiological t	esting		24 hours	Microb	oiological te	esting		72 hours
				uce/	PA	<u>a</u>			62-92		ssiv S04	<u></u>										BOD,	Nitrate, Ni	trite, Total I	4	2 days	Anions	3			28 days
				ese	I	용			၂ဗ	1 1	Z de	Screen										Solids	- TSS, TE	S etc		7 days	SPOC	AS, pH Fie	eld and FO	X, CrS	24 hours
Eurofins	s mgt DI water batch number:			ID (pr	(TRH/PAH/BTEXN/8	B13 OCP / PCB			TPH		Aggressivity stivity, S04)	1701										Ferro	ıs iron			7 days	ASLP,	TCLP			7 days
		1		stos I	9 B7	B 1		etals			e L2 Resig	- Field										Containe	re .								
	Sample ID	Date	Matrix	Asbestos	Suite	Suite	PAH	8 metals	BTEX/	TCLP	Suite L2 CI, Resis	표										1LP	250P	125P	1LA	40mL viai	125ml. A	Jar	bag	Sample comm	nents:
1	GHD-BH6_0_0.1	27/09/2018	soil	х	х	х					х																	1	1		
2	GHD-BH6_0.4_0.5	27/09/2018	soil		х																							1	1		
3	GHD-BH7_0_0.1	27/09/2018	soil	х		х					х									Ш								1	1		
4	GHD-BH7_0.4_0.5	27/09/2018	soil		х							\sqcup							<u> </u>									1	1		
5	GHD-BH7_0.9_1.0	27/09/2018	soil	х			_			$\perp \perp$	x	\sqcup				\sqcup				-				ļ				1	1		
6	GHD-BH7_1.5_1.6	27/09/2018	soil	_	х	Ш	_								<u> </u>	\perp			_	Ш								1	1	<u> </u>	
7	GHD-BH7_1.9_2.0	27/09/2018	soil	_	-		_	\perp		++	X	\sqcup		+	ـــ	+			 			<u> </u>	<u> </u>	<u> </u>				1	1	D. (-t-ID-0	0000
8	SI-RIN01	27/09/2018	liquid	₩	_	\sqcup	х					-			_	+		_	-	\vdash		<u> </u>	<u></u>			2	1			Batch ID: S-	.0082
9	GHD-SI01	27/09/2018	soil	×	-	\sqcup		+		 		\vdash		+		+			-	\vdash								1	1		
10	GHD-SI02	27/09/2018	soil	X		\vdash		$-\!\!\!\!+$		\perp	+	\vdash	-	_	-	+	+		╄									1			
11	GHD-S103	27/09/2018	soil	×	-	\vdash	\dashv	-							\vdash	+	-	-	\vdash	-			_	<u> </u>				1	1	<u> </u>	
12	GHD-S104	27/09/2018	soil	X	-	\vdash	-	+	+	+	+	\vdash	+	-	┼	++			╫	\vdash		 	ļ				<u> </u>	1			
13	GHD-SI05	27/09/2018	soil	X	-	\vdash	-		+	++	-	\vdash	-	+-	\vdash	+	+		┼	\vdash		-						1	_		
14	GHD-SI06	27/09/2018	soil	×	+	\vdash	\dashv			+		\vdash		-	┼	+	+	+	\vdash	\vdash		 						 		please filter the s	sample in
15	GHD-BH1-GW	27/09/2018	liquid		×	x																	1	1		2	1			unpreserved green bottle for analy	
16																															
						La	abora	tory St	aff				***************************************		Tu	rn aro	und tin	ne							Method C	f Shipmer	t			Temperature on a	rrival:
Reling	uished By: Clifton Thompso	П	Receiv	ed B	By:	ilv	<i>(</i> ->	6)				p.e				✓ Courier						5.430								
Date &	Time: 02/10/2018 15:00		Date 8			-		_50			0-4	1 DAY	' L.J	2 D#	YY [_	Hand Delivered						Report number:								
					21018 507fM 5DAY 10DAY				Postal Courier Consignment # :					6205	1.7																
Signature: Sig			Signat	ture:		-	_		-	Manage in 15 december 2017 in the case												Couner	onsigiim	ent#;						1 2200	71

Enviro Sample NSW

Alena Bounkeua From:

Tuesday, 2 October 2018 5:07 PM Enviro Sample NSW; COC NSW Sent: To:

FW: GHD 2127425 Subject:

COC7 2127425_Eurofins_Chain Of Custody 1_SCOTLAND ISLAND.xls Attachments:

Follow up Flagged Follow Up Flag: Flag Status:

Hi Guys,

COC for samples arrived on Friday.

Please note that for the last water sample - it is for B7FILT - metals needs to be subbed from the unpreserved and filtered. If sending unlogged to Melbourne – please let Melbourne team know.

	:
************	*
	1
	1
	3
CHOCK-COOKSAN	÷
	į
	1
	ŧ
	Ť
	į
	A consistence of commentations and the commentation of the comment
	:
	1
	-
	ì
	į
	the second secon
	1
	i
	-
	ì
	ì
	•
	-
×	*
×	
×	*
×	
×	
94 24	
94 24	
×	The second secon
×	The second secon
35	The second secon
%	the second secon
707 107 107 107 107 107 107 107 107 107	The second secon
* **	the second secon
X	the second secon
**************************************	and the same of th

*** *** *** *** *** *** *** *** *** **	the second secon
** ** ** ** ** ** ** ** ** ** ** ** **	the second secon
* * * * * * * * * * * * * * * * * * *	The second secon
** ** ** ** ** ** ** ** ** ** ** ** **	The second secon
** ** ** ** ** ** ** ** ** ** ** ** **	The second secon
** ** ** ** ** ** ** ** ** ** ** ** **	The second secon
100 PM	The second secon
* * * * * * * * * * * * * * * * * * *	The second secon
* * * * * * * * * * * * * * * * * * *	The second secon
* * * * * * * * * * * * * * * * * * *	The second secon
* * * * * * * * * * * * * * * * * * *	The second secon
10 BH1 GW	The second secon
3HD BH1 GW	The second secon
GHD BH1 GIW	The second secon
GHD BH 1,62% (27.5% 15.1%)	The second secon
5HD BH1 GW	The second secon
GHD BH1 GW LPCOK TO SEPT	The second secon
6HD BH1 GW	The second secon
48 GHD BH1 G1W CVC CC 82 CC	The second secon
45 GHD BHAGSW COSC SECTION A X	The second secon
* x x 540 BH1 GW 2000 11	The second secon

Thanksi

Warm Regards,

Alena Bounkeua

Euroins inst

Phone: (02) 9900 8414

Email: <u>AlenaBounkeua@eurofins.com</u>

From: Clifton Thompson [mailto:Clifton.Thompson@ghd.com]
Sent: Tuesday, 2 October 2018 4:32 PM
To: Alena Bounkeua
Cc: Nibha Vaidya; Henry Luo
Subject: GHD 2127425

EXTERNAL EMAIL*

Hi Alena,

Please find the attached COC for the samples received on Friday.

Regards,

Clifton Thompson

Proudify employee awned T: 461 1 8898 8812 | M: 461 431 470 139 | E: <u>elfton.thompson@ehd.com</u> Level 2, 16 Smith Street Perremetta NSW 1150 Australia | <u>www.ghd.com</u>

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: **GHD Pty Ltd NSW**

Contact name: Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name:

Project ID: 2127425 COC number: Not provided

Turn around time: 5 Day

Oct 2, 2018 5:07 PM Date/Time received:

Eurofins | mgt reference: 620547

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 5.4 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Clifton Thompson - Clifton.Thompson@ghd.com.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson Report 620547-AID

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

 Project ID
 2127425

 Received Date
 Oct 02, 2018

 Date Reported
 Oct 09, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 7

Project Name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425

Date Reported: Oct 09, 2018

Date Sampled Sep 27, 2018 Report 620547-AID

Client Sample ID Eurofins mgt Sample No. Date Sampled			Sample Description	Result
GHD-BH6_0.0-0.1	18-Oc02399	Sep 27, 2018	Approximate Sample 192g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-BH7_0.0-0.1	18-Oc02401	Sep 27, 2018	Approximate Sample 289g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-BH7_0.9-1.0	18-Oc02403	Sep 27, 2018	Approximate Sample 229g Sample consisted of: Light brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-SI01	18-Oc02406	Sep 27, 2018	Approximate Sample 420g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-SI02	18-Oc02407	Sep 27, 2018	Approximate Sample 343g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-SI03	18-Oc02408	Sep 27, 2018	Approximate Sample 262g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-SI04	18-Oc02409	Sep 27, 2018	Approximate Sample 267g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-SI05	18-Oc02410	Sep 27, 2018	Approximate Sample 245g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
GHD-SI06	18-Oc02411	Sep 27, 2018	Approximate Sample 255g Sample consisted of: Brown fine-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 620547-AID

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyOct 02, 2018Indefinite

Certificate of Analysis

ac-MRA NA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: Clifton Thompson

Report 620547-S

Project name SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID 2127425 Received Date Oct 02, 2018

DI 10 1 ID			GHD-BH6 0.0-	GHD-BH6 0.4-	GHD-BH7_0.0-	GHD-BH7_0.4-
Client Sample ID			0.1	0.5	0.1	0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc02399	S18-Oc02400	S18-Oc02401	S18-Oc02402
Date Sampled			Sep 27, 2018	Sep 27, 2018	Sep 27, 2018	Sep 27, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	82	65	-	< 50
TRH C29-C36	50	mg/kg	110	73	-	< 50
TRH C10-36 (Total)	50	mg/kg	192	138	-	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	67	63	-	62
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	150	110	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	150	110	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5

		1		T	I	l
Client Sample ID			GHD-BH6_0.0- 0.1	GHD-BH6_0.4- 0.5	GHD-BH7_0.0- 0.1	GHD-BH7_0.4- 0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc02399	S18-Oc02400	S18-Oc02401	S18-Oc02402
Date Sampled			Sep 27, 2018	Sep 27, 2018	Sep 27, 2018	Sep 27, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	<u>'</u>	1				
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	182	114	-	107
p-Terphenyl-d14 (surr.)	1	%	221	126	-	120
Organochlorine Pesticides						-
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	_
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	_
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	_
b-BHC	0.05	mg/kg	< 0.05	_	< 0.05	_
d-BHC	0.05	mg/kg	< 0.05	_	< 0.05	_
Dieldrin	0.05	mg/kg	< 0.05	_	< 0.05	_
Endosulfan I	0.05	mg/kg	< 0.05	_	< 0.05	_
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	_
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	_
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	_
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	_
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	_
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	_
Methoxychlor	0.2	mg/kg	< 0.2	-	< 0.2	_
Toxaphene	1	mg/kg	< 1	-	< 1	_
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	_
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	_
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	135	-	112	-
Tetrachloro-m-xylene (surr.)	1	%	115	-	101	-
Polychlorinated Biphenyls		1				
Aroclor-1016	0.5	mg/kg	< 0.5	-	< 0.5	_
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	< 0.5	-	< 0.1	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	< 0.5	_
Aroclor-1248	0.5	mg/kg	< 0.5	-	< 0.5	_
Aroclor-1254	0.5	mg/kg	< 0.5	-	< 0.5	_
Aroclor-1260	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibutylchlorendate (surr.)	1	%	135	-	112	-
Tetrachloro-m-xylene (surr.)	1	%	115	-	101	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	GHD-BH6_0.0- 0.1 Soil S18-Oc02399 Sep 27, 2018	GHD-BH6_0.4- 0.5 Soil S18-Oc02400 Sep 27, 2018	GHD-BH7_0.0- 0.1 Soil S18-Oc02401 Sep 27, 2018	GHD-BH7_0.4- 0.5 Soil S18-Oc02402 Sep 27, 2018
Chloride	10	mg/kg	57	_	77	
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	77		94	
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		_	5.4	_
Resistivity*	0.5	ohm.m	650	_	530	_
Sulphate (as SO4)	10	mg/kg	14	_	13	_
% Moisture	1	%	14	11	11	11
Heavy Metals	<u> </u>	1 /-				
Arsenic	2	mg/kg	4.1	4.7	-	4.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	8.3	10	-	9.8
Copper	5	mg/kg	< 5	< 5	-	< 5
Lead	5	mg/kg	23	18	-	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Nickel	5	mg/kg	< 5	< 5	-	< 5
Zinc	5	mg/kg	39	32	-	22

Client Sample ID			GHD-BH7_0.9- 1.0	GHD-BH7_1.5- 1.6	GHD-BH7_1.9- 2.0
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc02403	S18-Oc02404	S18-Oc02405
Date Sampled			Sep 27, 2018	Sep 27, 2018	Sep 27, 2018
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions				
TRH C6-C9	20	mg/kg	-	< 20	-
TRH C10-C14	20	mg/kg	-	< 20	-
TRH C15-C28	50	mg/kg	=	< 50	-
TRH C29-C36	50	mg/kg	=	< 50	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	-
BTEX					
Benzene	0.1	mg/kg	-	< 0.1	-
Toluene	0.1	mg/kg	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	=	< 0.1	-
m&p-Xylenes	0.2	mg/kg	=	< 0.2	-
o-Xylene	0.1	mg/kg	=	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	75	-
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions				
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-
TRH C6-C10	20	mg/kg	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-
TRH >C10-C16	50	mg/kg	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-
TRH >C16-C34	100	mg/kg	-	< 100	-
TRH >C34-C40	100	mg/kg	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-

Client Sample ID			GHD-BH7_0.9- 1.0	GHD-BH7_1.5- 1.6	GHD-BH7_1.9- 2.0
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc02403	S18-Oc02404	S18-Oc02405
Date Sampled			Sep 27, 2018	Sep 27, 2018	Sep 27, 2018
Test/Reference	LOR	Unit		, , ,	,
Polycyclic Aromatic Hydrocarbons	Lor	O i iii			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	1.2	_
Acenaphthene	0.5	mg/kg	_	< 0.5	_
Acenaphthylene	0.5	mg/kg	_	< 0.5	_
Anthracene	0.5	mg/kg	_	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	_	< 0.5	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	_	< 0.5	_
Benzo(g.h.i)perylene	0.5	mg/kg	_	< 0.5	_
Benzo(k)fluoranthene	0.5	mg/kg	_	< 0.5	_
Chrysene	0.5	mg/kg	_	< 0.5	_
Dibenz(a.h)anthracene	0.5	mg/kg	_	< 0.5	_
Fluoranthene	0.5	mg/kg	_	< 0.5	_
Fluorene	0.5	mg/kg	_	< 0.5	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	< 0.5	_
Naphthalene	0.5	mg/kg	_	< 0.5	_
Phenanthrene	0.5	mg/kg	_	< 0.5	_
Pyrene	0.5	mg/kg	_	< 0.5	_
Total PAH*	0.5	mg/kg	_	< 0.5	_
2-Fluorobiphenyl (surr.)	1	%	_	110	_
p-Terphenyl-d14 (surr.)	1	%	_	123	_
p rospilosty at a (outr.)		70		120	
Chloride	10	mg/kg	27	-	42
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	53	-	1100
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.4	-	4.8
Resistivity*	0.5	ohm.m	940	=	47
Sulphate (as SO4)	10	mg/kg	36	-	140
% Moisture	1	%	11	16	18
Heavy Metals					
Arsenic	2	mg/kg	-	12	-
Cadmium	0.4	mg/kg	-	< 0.4	-
Chromium	5	mg/kg	-	25	-
Copper	5	mg/kg	-	< 5	-
Lead	5	mg/kg	-	16	-
Mercury	0.1	mg/kg	-	< 0.1	-
Nickel	5	mg/kg	-	< 5	-
Zinc	5	mg/kg	-	5.8	_

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 03, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 03, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 03, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 03, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 03, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Oct 03, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Oct 03, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Chloride	Sydney	Oct 03, 2018	28 Day
- Method: E045 /E047 Chloride			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Oct 03, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Oct 03, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	Oct 03, 2018	28 Day
- Method: E045 Anions by Ion Chromatography			
% Moisture	Sydney	Oct 02, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			
Metals M8	Sydney	Oct 03, 2018	28 Day
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425
 Received:
 Oct 2, 2018 5:07 PM

 Report #:
 620547
 Due:
 Oct 9, 2018

 Phone:
 02 9239 7100
 Priority:
 5 Day

02 9239 7199 Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)
				271			.,		.,	.,	.,	
		- NATA Site # 1 y - NATA Site #				Х	Х	Х	Х	Х	Х	X
		y - NATA Site # NATA Site # 237										
	rnal Laboratory		50									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GHD- BH6_0.0-0.1	Sep 27, 2018		Soil	S18-Oc02399	Х		Х	Х	Х	Х	
2	GHD- BH6_0.4-0.5	Sep 27, 2018		Soil	S18-Oc02400					Х	Х	
3	GHD- BH7_0.0-0.1	Sep 27, 2018		Soil	S18-Oc02401	Х		Х	Х	Х		
4	GHD- BH7_0.4-0.5	Sep 27, 2018		Soil	S18-Oc02402					Х	Х	
5	GHD- BH7_0.9-1.0	Sep 27, 2018		Soil	S18-Oc02403	Х			Х	Х		
6	GHD-	Sep 27, 2018		Soil	S18-Oc02404					Х	Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 6 of 16

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT **Project Name:**

Project ID: 2127425 Order No.: 2127425 Received: Oct 2, 2018 5:07 PM Report #: 620547 Due: Oct 9, 2018 Phone: 02 9239 7100 Priority: 5 Day Fax: 02 9239 7199

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Mall			mple Detail			Asbestos - AS4964	Polycyclic Aromatic Hydrocarbons	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)
	ourne Laboratoney			2/1		Х	Х	X	Х	Х	Х	X
	bane Laboratory											
	h Laboratory - N											
	BH7_1.5-1.6											
7	GHD- BH7_1.9-2.0	Sep 27, 2018		Soil	S18-Oc02405				Х	Х		
8	GHD-SI01	Sep 27, 2018		Soil	S18-Oc02406	Х						
9	GHD-SI02	Sep 27, 2018		Soil	S18-Oc02407	Х						
10	GHD-SI03	Sep 27, 2018		Soil	S18-Oc02408	Х						
11	GHD-SI04	Sep 27, 2018		Soil	S18-Oc02409	Х						
12	GHD-SI05	Sep 27, 2018		Soil	S18-Oc02410	Х						
13	GHD-SI06	Sep 27, 2018		Soil	S18-Oc02411	Х						
14	GHD-BH1-GW	Sep 27, 2018		Water	S18-Oc02412			Х				Х
15	SI-RIN01	Sep 27, 2018		Water	S18-Oc02413		Х					
Test	Counts					9	1	3	4	7	4	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 8 of 16

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 620547-S

Quality Control Results

	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
i				
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1		Pass	
	< 0.3	0.3	Pass	
1 3 3				
i				
	< 0.5	0.5	Pass	
	< 20			
	1			
IIIg/Kg	V 100	100	1 455	
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
	1			
			_	
	1			
mg/kg	< 0.5	0.5	Pass	
	Т		Ι	
	.01	0.1	Door	
mg/kg mg/kg				
	< 0.05	0.05	Pass	I
	mg/kg mg/kg	mg/kg < 20	mg/kg < 20	mg/kg < 20

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	<1	1	Pass	
Method Blank	Hig/kg			1 433	
Polychlorinated Biphenyls				П	
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1016 Aroclor-1221	mg/kg	< 0.1	0.5	Pass	
	1 -				
Aroclor 1242	mg/kg	< 0.5	0.5	Pass	
Aroclor 1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank	T	T I		T	
Chloride	mg/kg	< 10	10	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 5	5	Pass	
Sulphate (as SO4)	mg/kg	< 10	10	Pass	
Method Blank		1			
Heavy Metals	T				
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	109	70-130	Pass	
TRH C10-C14	%	114	70-130	Pass	
LCS - % Recovery	•			•	
ВТЕХ					
Benzene	%	117	70-130	Pass	
Toluene	%	116	70-130	Pass	
Ethylbenzene	%	116	70-130	Pass	
m&p-Xylenes	%	119	70-130	Pass	
o-Xylene	%	118	70-130	Pass	
Xylenes - Total	%	119	70-130	Pass	
LCS - % Recovery	/0	113	1 10-130	1 1 455	
				T	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	0/	127	70 120	Poor	
Naphthalene	%	127	70-130	Pass	
TRH C6-C10	%	105	70-130	Pass	
TRH >C10-C16	%	128	70-130	Pass	
LCS - % Recovery			1	T	
Polycyclic Aromatic Hydrocarbons				 	
Acenaphthene	%	82	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	90	70-130	Pass	
Benz(a)anthracene	%	89	70-130	Pass	
Benzo(a)pyrene	%	87	70-130	Pass	
Benzo(b&j)fluoranthene	%	80	70-130	Pass	
Benzo(g.h.i)perylene	%	91	70-130	Pass	
Benzo(k)fluoranthene	%	85	70-130	Pass	
Chrysene	%	90	70-130	Pass	
Dibenz(a.h)anthracene	%	92	70-130	Pass	
Fluoranthene		91	70-130	Pass	
Fluorene		89	70-130	Pass	
	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene					
Naphthalene	%	87	70-130	Pass	
Phenanthrene	%	90	70-130	Pass	
Pyrene	%	93	70-130	Pass	
LCS - % Recovery				Γ	
Organochlorine Pesticides					
4.4'-DDD	%	110	70-130	Pass	
4.4'-DDE	%	127	70-130	Pass	
4.4'-DDT	%	93	70-130	Pass	
a-BHC	%	119	70-130	Pass	
Aldrin	%	122	70-130	Pass	
b-BHC	%	106	70-130	Pass	
d-BHC	%	112	70-130	Pass	
Dieldrin	%	127	70-130	Pass	
Endosulfan I	%	124	70-130	Pass	
Endosulfan II	%	122	70-130	Pass	
Endosulfan sulphate	%	121	70-130	Pass	
Endrin	%	124	70-130	Pass	
Endrin aldehyde	%	111	70-130	Pass	
Endrin ketone	%	111	70-130	Pass	
g-BHC (Lindane)	%	113	70-130	Pass	
Heptachlor	%	114	70-130	Pass	
Heptachlor epoxide	%	121	70-130	Pass	
Hexachlorobenzene	% %	105	70-130	Pass	
Methoxychlor	%	107	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls	2/	110	70.400	_	
Aroclor-1260	%	110	70-130	Pass	
LCS - % Recovery		T	T ==	Γ_	
Chloride	%	103	70-130	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	%	97	70-130	Pass	
Resistivity*	%	97	70-130	Pass	
Sulphate (as SO4)	%	108	70-130	Pass	
LCS - % Recovery					
Heavy Metals	1				
Arsenic	%	118	70-130	Pass	
Cadmium	%	104	70-130	Pass	
Chromium	%	104	70-130	Pass	
Copper	%	102	70-130	Pass	
Lead	%	106	70-130	Pass	
Mercury	%	103	70-130	Pass	
Nickel	%	101	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1			
TRH C6-C9	S18-Oc02040	NCP	%	101	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	S18-Oc02040	NCP	%	103	70-130	Pass	
Toluene	S18-Oc02040	NCP	%	102	70-130	Pass	
Ethylbenzene	S18-Oc02040	NCP	%	99	70-130	Pass	
m&p-Xylenes	S18-Oc02040	NCP	%	104	70-130	Pass	
o-Xylene	S18-Oc02040	NCP	%	102	70-130	Pass	
Xylenes - Total	S18-Oc02040	NCP	%	103	70-130	Pass	
Spike - % Recovery		,					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1			
Naphthalene	S18-Oc02040	NCP	%	82	70-130	Pass	
TRH C6-C10	S18-Oc02040	NCP	%	99	70-130	Pass	
Spike - % Recovery			,,				
Organochlorine Pesticides				Result 1			
4.4'-DDD	S18-Oc03390	NCP	%	123	70-130	Pass	
4.4'-DDT	S18-Oc03390	NCP	%	121	70-130	Pass	
Methoxychlor	S18-Oc03390	NCP	%	117	70-130	Pass	
Spike - % Recovery	1 010 0000000	1101	70	117	70-130	1 433	
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	S18-Oc03390	NCP	%	97	70-130	Pass	
Spike - % Recovery	310-0003390	INCI	/0	97	70-130	1 033	
Spike - % Recovery				Result 1			
Chlorida	C10 O-02200	СР	0/		70.120	Door	
Chloride	S18-Oc02399		%	96	70-130	Pass	
Sulphate (as SO4)	S18-Oc02399	CP	%	101	70-130	Pass	
Spike - % Recovery	4000 NEDM F			Don't 4			
Total Recoverable Hydrocarbons			0/	Result 1	70,100	_	
TRH C10-C14	S18-Oc02400	CP	%	86	70-130	Pass	
Spike - % Recovery				I 5 11 1			
Total Recoverable Hydrocarbons				Result 1		_	
TRH >C10-C16	S18-Oc02400	CP	%	91	70-130	Pass	
Spike - % Recovery				T T			
Polycyclic Aromatic Hydrocarbon				Result 1		_	
Acenaphthene	S18-Oc02400	CP	%	77	70-130	Pass	
Acenaphthylene	S18-Oc02400	CP	%	87	70-130	Pass	
Anthracene	S18-Oc02400	CP	%	86	70-130	Pass	
Benz(a)anthracene	S18-Oc02400	CP	%	83	70-130	Pass	
Benzo(a)pyrene	S18-Oc02400	CP	%	79	70-130	Pass	
Benzo(b&j)fluoranthene	S18-Oc02400	CP	%	75	70-130	Pass	
Benzo(g.h.i)perylene	S18-Oc02400	CP	%	88	70-130	Pass	
Benzo(k)fluoranthene	S18-Oc02400	CP	%	79	70-130	Pass	
Chrysene	S18-Oc02400	CP	%	87	70-130	Pass	
Dibenz(a.h)anthracene	S18-Oc02400	CP	%	90	70-130	Pass	
Fluoranthene	S18-Oc02400	CP	%	89	70-130	Pass	
Fluorene	S18-Oc02400	CP	%	85	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-Oc02400	CP	%	92	70-130	Pass	
Naphthalene	S18-Oc02400	CP	%	87	70-130	Pass	
Phenanthrene	S18-Oc02400	CP	%	86	70-130	Pass	
Pyrene	S18-Oc02400	CP	%	89	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S18-Oc02400	СР	%	109	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Cadmium	S18-Oc02400	СР	%	99			70-130	Pass	
Chromium	S18-Oc02400	СР	%	95			70-130	Pass	
Copper	S18-Oc02400	СР	%	92			70-130	Pass	
Lead	S18-Oc02400	СР	%	96			70-130	Pass	
Mercury	S18-Oc02400	СР	%	101			70-130	Pass	
Nickel	S18-Oc02400	СР	%	95			70-130	Pass	
Zinc	S18-Oc02400	СР	%	86			70-130	Pass	
Spike - % Recovery					,				
Organochlorine Pesticides				Result 1					
4.4'-DDE	S18-Oc02401	СР	%	124			70-130	Pass	
a-BHC	S18-Oc02401	СР	%	109			70-130	Pass	
Aldrin	S18-Oc02401	СР	%	109			70-130	Pass	
b-BHC	S18-Oc02401	СР	%	97			70-130	Pass	
d-BHC	S18-Oc02401	СР	%	102			70-130	Pass	
Dieldrin	S18-Oc02401	СР	%	124			70-130	Pass	
Endosulfan I	S18-Oc02401	CP	%	114			70-130	Pass	
Endosulfan II	S18-Oc02401	CP	%	118			70-130	Pass	
Endosulfan sulphate	S18-Oc02401	CP	%	124			70-130	Pass	
Endrin	S18-Oc02401	СР	%	126			70-130	Pass	
Endrin aldehyde	S18-Oc02401	CP	%	110			70-130	Pass	
Endrin ketone	S18-Oc02401	CP	%	97			70-130	Pass	
g-BHC (Lindane)	S18-Oc02401	CP	%	101			70-130	Pass	
Heptachlor	S18-Oc02401	CP	%	96			70-130	Pass	
Heptachlor epoxide	S18-Oc02401	CP	%	110			70-130	Pass	
Hexachlorobenzene	S18-Oc02401	CP	%	95			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-Oc02399	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C9 TRH C10-C14	S18-Oc02399 S18-Oc02399	CP CP	mg/kg mg/kg	< 20 < 20	< 20 < 20	<1 <1	30% 30%	Pass Pass	
TRH C10-C14	S18-Oc02399	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14 TRH C15-C28	S18-Oc02399 S18-Oc02399	CP CP	mg/kg mg/kg	< 20 82	< 20 < 50	<1 <1	30% 30%	Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36	S18-Oc02399 S18-Oc02399	CP CP	mg/kg mg/kg	< 20 82	< 20 < 50	<1 <1	30% 30%	Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	S18-Oc02399 S18-Oc02399	CP CP	mg/kg mg/kg	< 20 82 110	< 20 < 50 61	<1 <1 <1	30% 30%	Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP	mg/kg mg/kg mg/kg	< 20 82 110 Result 1	< 20 < 50 61 Result 2	<1 <1 <1 RPD	30% 30% 30%	Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP	mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1	< 20 < 50 61 Result 2 < 0.1	<1 <1 <1 RPD <1	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP	mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1	< 20 < 50 61 Result 2 < 0.1 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 < 50	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 < 50	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 < 50 150	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 < 50 150	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 < 50 150 < 100 Result 1	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 100 < 100 Result 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 < 50 150 < 100 Result 1 < 0.5	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 < 50 < 100 < 100 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthylene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 < 50 150 < 100 Result 1 < 0.5 < 0.5 < 0.5	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene	\$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399 \$18-Oc02399	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 82 110 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 < 50 150 < 100 Result 1 < 0.5	< 20 < 50 61 Result 2 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 < 50 < 100 < 100 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate							1		
Polycyclic Aromatic Hydrocarbons		1	1	Result 1	Result 2	RPD			
Benzo(b&j)fluoranthene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							ı		
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Oc02399	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Oc02399	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Oc02399	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S18-Oc02399	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S18-Oc02399	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Oc02399	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S18-Oc02399	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S18-Oc02399	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S18-Oc02399	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S18-Oc02399	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S18-Oc02399	CP	mg/kg	57	57	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	S18-Oc02236	NCP	uS/cm	84	79	6.0	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S18-Oc02399	СР	pH Units	5.9	5.9	pass	30%	Pass	
Resistivity*	S18-Oc02399	CP	ohm.m	650	630	3.0	30%	Pass	
Sulphate (as SO4)	S18-Oc02399	CP	mg/kg	14	13	3.0	30%	Pass	
/		 	J .J	14	14	1.0	+ · · · · · ·	1	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Oc03239	NCP	mg/kg	80	86	7.0	30%	Pass	
Cadmium	S18-Oc03094	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Oc03094	NCP	mg/kg	5.5	5.0	9.0	30%	Pass	
Copper	S18-Oc03094	NCP	mg/kg	5.2	5.3	3.0	30%	Pass	
Lead	S18-Oc03094	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S18-Oc03094	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Oc03094	NCP	mg/kg	5.9	5.6	5.0	30%	Pass	
Zinc	S18-Oc03094	NCP	mg/kg	54	53	2.0	30%	Pass	

Comments

Sample Integrity

1 0 1	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins I mg be liable for consequential damages including, but not limited to, lost or ordific, samages for refault to its medic deadlines and lots for failure to meet deadlines and lots for failure to meet deadlines and lots the samples as preceded in all and refaults only to the interest test. Unless, indicated otherwise, the tiests yeveries, the lists yeveries, the lists yeveries, the lists yeveries, the lists yeveries, the lists yeveries.

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: GHD Pty Ltd NSW Order No.: 2127425 Received: Oct 2, 2018 5:07 PM Address:

Level 15, 133 Castlereagh Street Report #: 620547 Due: Oct 9, 2018 Sydney Phone: 02 9239 7100 Priority: 5 Day

NSW 2000 Fax: 02 9239 7199 **Contact Name:** Clifton Thompson

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT **Project Name:**

Project ID: 2127425 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	Polycyclic Aromatic Hydrocarbons	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)
		ory - NATA Site		271								
		- NATA Site # 1				Х	Х	Х	Х	Х	Х	Х
		y - NATA Site #										
		NATA Site # 237	36									
	rnal Laboratory		0 II	I								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GHD- BH6_0.0-0.1	Sep 27, 2018		Soil	S18-Oc02399	Х		Х	Х	Х	Х	
2	GHD- BH6_0.4-0.5	Sep 27, 2018		Soil	S18-Oc02400					Х	Х	
3	GHD- BH7_0.0-0.1	Sep 27, 2018		Soil	S18-Oc02401	х		Х	Х	Х		
4	GHD- BH7_0.4-0.5	Sep 27, 2018		Soil	S18-Oc02402					Х	Х	
5	GHD- BH7_0.9-1.0	Sep 27, 2018		Soil	S18-Oc02403	Х			Х	Х		
6	GHD-	Sep 27, 2018		Soil	S18-Oc02404					х	х	

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Fax:

Melbourne

2127425

02 9239 7199

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

Received:

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Oct 2, 2018 5:07 PM

Company Name: GHD Pty Ltd NSW

Address:

Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: Project ID: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

2127425

 Report #:
 620547
 Due:
 Oct 9, 2018

 Phone:
 02 9239 7100
 Priority:
 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Molli			mple Detail	174		Asbestos - AS4964	Polycyclic Aromatic Hydrocarbons	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)
	ourne Laborato			2/1		X	X	X	Х	Х	X	X
	ney Laboratory bane Laboratory											^
	h Laboratory - N											
1 CIL	BH7 1.5-1.6	ATA OILE # 257	30	1								
7	GHD- BH7_1.9-2.0	Sep 27, 2018		Soil	S18-Oc02405				Х	Х		
8	GHD-SI01	Sep 27, 2018		Soil	S18-Oc02406	Х						
9	GHD-SI02	Sep 27, 2018		Soil	S18-Oc02407	Х						
10	GHD-SI03	Sep 27, 2018		Soil	S18-Oc02408	Х						
11	GHD-SI04	Sep 27, 2018		Soil	S18-Oc02409	Х						
12	GHD-SI05	Sep 27, 2018		Soil	S18-Oc02410	Х						
13	GHD-SI06	Sep 27, 2018		Soil	S18-Oc02411	Х						
14	GHD-BH1-GW	Sep 27, 2018		Water	S18-Oc02412			Х				Х
15	SI-RIN01	Sep 27, 2018		Water	S18-Oc02413		Х					
Test	Counts					9	1	3	4	7	4	1

Page 5 of 7

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Oct 09, 2018

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Oct 09, 2018

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 7 of 7

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Attention: **Clifton Thompson**

620547-W Report

SCOTLAND ISLAND ENERGY RELIABILITY PROJECT Project name

Project ID 2127425 Received Date Oct 02, 2018

Client Sample ID			GHD-BH1-GW	SI-RIN01
Sample Matrix			Water	Water
Eurofins mgt Sample No.			S18-Oc02412	S18-Oc02413
Date Sampled			Sep 27, 2018	Sep 27, 2018
•	1.00	l lait	OCP 27, 2010	OCP 21, 2010
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM			0.00	
TRH C6-C9	0.02	mg/L	< 0.02	-
TRH C10-C14	0.05	mg/L	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-
BTEX				
Benzene	0.001	mg/L	< 0.001	-
Toluene	0.001	mg/L	< 0.001	-
Ethylbenzene	0.001	mg/L	< 0.001	-
m&p-Xylenes	0.002	mg/L	< 0.002	-
o-Xylene	0.001	mg/L	< 0.001	-
Xylenes - Total	0.003	mg/L	< 0.003	-
4-Bromofluorobenzene (surr.)	1	%	82	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-
TRH C6-C10	0.02	mg/L	< 0.02	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001

Client Sample ID			GHD-BH1-GW	SI-RIN01
Sample Matrix			Water	Water
Eurofins mgt Sample No.			S18-Oc02412	S18-Oc02413
Date Sampled			Sep 27, 2018	Sep 27, 2018
Test/Reference	LOR	Unit		•
Polycyclic Aromatic Hydrocarbons				
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	100	67
p-Terphenyl-d14 (surr.)	1	%	124	72
Organochlorine Pesticides	<u> </u>			
Chlordanes - Total	0.001	mg/L	< 0.001	-
4.4'-DDD	0.0001	mg/L	< 0.0001	-
4.4'-DDE	0.0001	mg/L	< 0.0001	-
4.4'-DDT	0.0001	mg/L	< 0.0001	-
a-BHC	0.0001	mg/L	< 0.0001	-
Aldrin	0.0001	mg/L	< 0.0001	-
b-BHC	0.0001	mg/L	< 0.0001	-
d-BHC	0.0001	mg/L	< 0.0001	-
Dieldrin	0.0001	mg/L	< 0.0001	-
Endosulfan I	0.0001	mg/L	< 0.0001	-
Endosulfan II	0.0001	mg/L	< 0.0001	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	-
Endrin	0.0001	mg/L	< 0.0001	-
Endrin aldehyde	0.0001	mg/L	< 0.0001	-
Endrin ketone	0.0001	mg/L	< 0.0001	-
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	-
Heptachlor	0.0001	mg/L	< 0.0001	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	-
Hexachlorobenzene	0.0001	mg/L	< 0.0001	-
Methoxychlor	0.0001	mg/L	< 0.0001	-
Toxaphene	0.01	mg/L	< 0.01	-
Aldrin and Dieldrin (Total)*	0.0001	mg/L	< 0.0001	-
DDT + DDE + DDD (Total)*	0.0001	mg/L	< 0.0001	-
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	< 0.001	-
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	< 0.001	-
Dibutylchlorendate (surr.)	1	%	70	-
Tetrachloro-m-xylene (surr.)	1	%	63	-
Polychlorinated Biphenyls				
Aroclor-1016	0.005	mg/L	< 0.005	-
Aroclor-1221	0.001	mg/L	< 0.001	-
Aroclor-1232	0.005	mg/L	< 0.005	-
Aroclor-1242	0.005	mg/L	< 0.005	-
Aroclor-1248	0.005	mg/L	< 0.005	-
Aroclor-1254	0.005	mg/L	< 0.005	-
Aroclor-1260	0.005	mg/L	< 0.005	-
Total PCB*	0.001	mg/L	< 0.001	-
Dibutylchlorendate (surr.)	1	%	70	-
Tetrachloro-m-xylene (surr.)	1	%	63	-

Client Sample ID Sample Matrix			GHD-BH1-GW Water	SI-RIN01 Water
Eurofins mgt Sample No.			S18-Oc02412	S18-Oc02413
Date Sampled			Sep 27, 2018	Sep 27, 2018
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	0.002	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	-
Chromium (filtered)	0.001	mg/L	0.004	-
Copper (filtered)	0.001	mg/L	0.009	-
Lead (filtered)	0.001	mg/L	0.003	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	-
Nickel (filtered)	0.001	mg/L	0.020	-
Zinc (filtered)	0.005	ma/L	0.044	_

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 02, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 02, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 02, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 02, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 02, 2018	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8 filtered	Sydney	Oct 02, 2018	28 Day
- Method:			
Organochlorine Pesticides	Sydney	Oct 02, 2018	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Oct 02, 2018	7 Days
Method, LTM ODC 2220 OCD 9 DCD in Sail and Water			

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271

02 9239 7199

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

 Order No.:
 2127425
 Received:
 Oct 2, 2018 5:07 PM

 Report #:
 620547
 Due:
 Oct 9, 2018

 Phone:
 02 9239 7100
 Priority:
 5 Day

Contact Name: Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	Polycyclic Aromatic Hydrocarbons	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)
		ory - NATA Site		271		Х	Х	X	Х	Х	X	Х
		- NATA Site # 1 y - NATA Site #					^		^	^	^	^
		NATA Site # 237										
Exte	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	GHD- BH6_0.0-0.1	Sep 27, 2018		Soil	S18-Oc02399	х		x	х	х	х	
2	GHD- BH6_0.4-0.5	Sep 27, 2018		Soil	S18-Oc02400					х	х	
3	GHD- BH7_0.0-0.1	Sep 27, 2018		Soil	S18-Oc02401	х		Х	х	Х		
4	GHD- BH7_0.4-0.5	Sep 27, 2018		Soil	S18-Oc02402					Х	Х	
5	GHD- BH7_0.9-1.0	Sep 27, 2018		Soil	S18-Oc02403	Х			Х	Х		
6	GHD-	Sep 27, 2018		Soil	S18-Oc02404					Х	Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 5 of 13
Report Number: 620547-W

Date Reported:Oct 09, 2018

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: GHD Pty Ltd NSW

Address: Level 15, 133 Castlereagh Street

Sydney

NSW 2000

Project Name: SCOTLAND ISLAND ENERGY RELIABILITY PROJECT

Project ID: 2127425

Order No.: 2127425 Received: Oct 2, 2018 5:07 PM Report #: 620547 Due: Oct 9, 2018 Phone: 02 9239 7100 Priority: 5 Day **Contact Name:** Fax: 02 9239 7199 Clifton Thompson

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - AS4964	Polycyclic Aromatic Hydrocarbons	Eurofins mgt Suite B13	Aggressivity Soil Set	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)
	oourne Laborato			271								
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х
	bane Laboratory											
Pert	h Laboratory - N	NATA Site # 237	736									
	BH7_1.5-1.6											
7	GHD- BH7_1.9-2.0	Sep 27, 2018		Soil	S18-Oc02405				Х	Х		
8	GHD-SI01	Sep 27, 2018		Soil	S18-Oc02406	Х						
9	GHD-SI02	Sep 27, 2018		Soil	S18-Oc02407	Х						
10	GHD-SI03	Sep 27, 2018		Soil	S18-Oc02408	Х						
11	GHD-SI04	Sep 27, 2018		Soil	S18-Oc02409	Х						
12	GHD-SI05	Sep 27, 2018		Soil	S18-Oc02410	Х						
13	GHD-SI06	Sep 27, 2018		Soil	S18-Oc02411	Х						
14	GHD-BH1-GW	Sep 27, 2018		Water	S18-Oc02412			Х				Х
15	SI-RIN01	Sep 27, 2018		Water	S18-Oc02413		Х					
Test	Counts					9	1	3	4	7	4	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 7 of 13

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 620547-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank	IIIg/L	V 0.1	0.1	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(q.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene		< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001		Pass	
	mg/L		0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L		0.001		
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene Method Blank	mg/L	< 0.001	0.001	Pass	
Method Blank					
Organochlorine Pesticides	//	. 0 004	0.004	Dana	
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptano Limits	e Pass Limits	Qualifying Code
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.001	0.001	Pass	
Method Blank	IIIg/L	< 0.01	0.01	Fass	
Polychlorinated Biphenyls		Т			
	ma/l	4 O OOF	0.005	Poor	
Aroclor-1016	mg/L	< 0.005	0.005	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.005	0.005	Pass	
Aroclor-1242	mg/L	< 0.005	0.005	Pass	
Aroclor-1248	mg/L	< 0.005	0.005	Pass	
Aroclor-1254	mg/L	< 0.005	0.005	Pass	
Aroclor-1260	mg/L	< 0.005	0.005	Pass	
Total PCB*	mg/L	< 0.001	0.001	Pass	
Method Blank				<u> </u>	
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	74	70-130	Pass	
TRH C10-C14	%	83	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	77	70-130	Pass	
Toluene	%	83	70-130	Pass	
Ethylbenzene	%	78	70-130	Pass	
m&p-Xylenes	%	79	70-130	Pass	
o-Xylene	%	82	70-130	Pass	
Xylenes - Total	%	80	70-130	Pass	
LCS - % Recovery	, ,		, , , , , , , , ,	,	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	121	70-130	Pass	
TRH C6-C10	%	71	70-130	Pass	
TRH >C10-C16	%	83	70-130	Pass	
LCS - % Recovery	70		70-130	1 433	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	87	70-130	Pass	
•	%	84	70-130	Pass	
Acenaphthylene					
Anthracene	%	84	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	92	70-130	Pass	

					1			
Test			Units	Result 1		Accepta Limit		Qualifying Code
Benzo(b&j)fluoranthene			%	91		70-13	0 Pass	
Benzo(g.h.i)perylene			%	97		70-13	0 Pass	
Benzo(k)fluoranthene			%	94		70-13	0 Pass	
Chrysene			%	92		70-13	0 Pass	
Dibenz(a.h)anthracene			%	92		70-13	0 Pass	
Fluoranthene			%	88		70-13	0 Pass	
Fluorene			%	87		70-13	0 Pass	
Indeno(1.2.3-cd)pyrene			%	91		70-13	0 Pass	
Naphthalene			%	81		70-13	0 Pass	
Phenanthrene			%	83		70-13	0 Pass	
Pyrene			%	90		70-13	0 Pass	
LCS - % Recovery								
Organochlorine Pesticides								
4.4'-DDD			%	104		70-13	0 Pass	
4.4'-DDE			%	106		70-13		
4.4'-DDT			%	96		70-13		
a-BHC			%	102		70-13		
Aldrin			%	94		70-13		
b-BHC			%	94		70-13		
d-BHC			%	92		70-13		
Dieldrin			%	104		70-13		
Endosulfan I			%	102		70-13		
Endosulfan II			%	82		70-13		
Endosulfan sulphate			%	70		70-13		
Endrin			%	120		70-13		
Endrin aldehyde			%	70		70-13		
Endrin ketone			%	80		70-13		
g-BHC (Lindane)			%	102		70-13		
Heptachlor			%	98		70-13		
Heptachlor epoxide			%	102		70-13		
Hexachlorobenzene			%	82		70-13	0 Pass	
Methoxychlor			%	82		70-13	0 Pass	
Toxaphene			%	92		70-13	0 Pass	
LCS - % Recovery				1	ı	l I		
Polychlorinated Biphenyls			1					
Aroclor-1260			%	83		70-13	0 Pass	
LCS - % Recovery					T.			
Heavy Metals								
Arsenic (filtered)			%	102		70-13	0 Pass	
Cadmium (filtered)			%	99		70-13	0 Pass	
Chromium (filtered)			%	99		70-13	0 Pass	
Copper (filtered)			%	98		70-13	0 Pass	
Lead (filtered)			%	99		70-13	0 Pass	
Mercury (filtered)			%	97		70-13	0 Pass	
Nickel (filtered)			%	97		70-13		
Zinc (filtered)			%	96		70-13		
Test	Lab Sample ID	QA Source	Units	Result 1		Accepta Limit	nce Pass	Qualifying
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S18-Se37127	NCP	%	87		70-13	0 Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S18-Se37127	NCP	%	90		70-13	0 Pass	
Toluene	S18-Se37127	NCP	%	90		70-13		
. 5.45110	J 3 10 0007 127		/0		I	1 70-10	1 1 433	

		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Ethylbenzene	S18-Se37127	NCP	%	90			70-130	Pass	
m&p-Xylenes	S18-Se37127	NCP	%	92			70-130	Pass	
o-Xylene	S18-Se37127	NCP	%	94			70-130	Pass	
Xylenes - Total	S18-Se37127	NCP	%	93			70-130	Pass	
Spike - % Recovery				Ι					
Total Recoverable Hydrocarb				Result 1				_	
Naphthalene	S18-Se37127	NCP	%	86			70-130	Pass	
TRH C6-C10	S18-Se37127	NCP	%	82			70-130	Pass	
Spike - % Recovery				Ι			I		
Organochlorine Pesticides				Result 1				_	
4.4'-DDD	M18-Se01593	NCP	%	127			70-130	Pass	
4.4'-DDE	M18-Se01593	NCP	%	126			70-130	Pass	
4.4'-DDT	M18-Se01593	NCP	%	121			70-130	Pass	
a-BHC	M18-Se01593	NCP	%	121			70-130	Pass	
Aldrin	M18-Se01593	NCP	%	121			70-130	Pass	
b-BHC	M18-Se01593	NCP	%	110			70-130	Pass	
d-BHC	M18-Se01593	NCP	%	116			70-130	Pass	
Dieldrin	M18-Se01593	NCP	%	126			70-130	Pass	
Endosulfan I	M18-Se01593	NCP	%	122			70-130	Pass	
Endosulfan II	M18-Se01593	NCP	%	120			70-130	Pass	
Endosulfan sulphate	M18-Se01593	NCP	%	122			70-130	Pass	
Endrin aldehyde	M18-Se01593	NCP	%	110			70-130	Pass	
Endrin ketone	M18-Se01593	NCP	%	111			70-130	Pass	
g-BHC (Lindane)	M18-Se01593	NCP	%	122			70-130	Pass	
Heptachlor	M18-Se01593	NCP	%	124			70-130	Pass	
Heptachlor epoxide	M18-Se01593	NCP	%	119			70-130	Pass	
Hexachlorobenzene	M18-Se01593	NCP	%	106			70-130	Pass	
Methoxychlor	M18-Se01593	NCP	%	115			70-130	Pass	
Spike - % Recovery							T		
Heavy Metals	010 0 00101			Result 1				_	
Arsenic (filtered)	S18-Se37124	NCP	%	121			70-130	Pass	
Cadmium (filtered)	S18-Se37124	NCP	%	99			70-130	Pass	
Chromium (filtered)	S18-Se37124	NCP	%	92			70-130	Pass	
Copper (filtered)	S18-Se37124	NCP	%	82			70-130	Pass	
Lead (filtered)	S18-Se37124	NCP	%	85			70-130	Pass	
Mercury (filtered)	S18-Se37124	NCP	%	87			70-130	Pass	
Nickel (filtered)	S18-Se37124	NCP	%	85			70-130	Pass	
Zinc (filtered)	S18-Se37124	NCP	%	84			70-130	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-Se37126	NCP	mg/L	72	0.41	1.0	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S18-Se37126	NCP	mg/L	100	0.051	<1	30%	Pass	
Toluene	S18-Se37126	NCP	mg/L	96	0.048	<1	30%	Pass	
Ethylbenzene	S18-Se37126	NCP	mg/L	87	0.045	3.0	30%	Pass	
m&p-Xylenes	S18-Se37126	NCP	mg/L	84	0.086	3.0	30%	Pass	
o-Xylene	S18-Se37126	NCP	mg/L	94	0.048	2.0	30%	Pass	
Xylenes - Total	S18-Se37126	NCP	mg/L	87	0.13	2.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-Se37126	NCP	mg/L	86	0.05	14	30%	Pass	
TRH C6-C10	S18-Se37126	NCP	mg/L	71	0.47	1.0	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S18-Oc03631	NCP	mg/L	0.002	0.002	6.0	30%	Pass	
Cadmium (filtered)	S18-Oc03631	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S18-Oc03631	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S18-Oc03631	NCP	mg/L	0.018	0.018	1.0	30%	Pass	
Lead (filtered)	S18-Oc03631	NCP	mg/L	0.002	0.002	3.0	30%	Pass	
Mercury (filtered)	S18-Oc07400	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S18-Oc03631	NCP	mg/L	0.003	0.003	5.0	30%	Pass	
Zinc (filtered)	S18-Oc03631	NCP	mg/L	0.027	0.026	5.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

GHD

Level 15 133 Castlereagh Street

T: 61 2 9239 7100 F: 61 2 9239 7199 E: sydmail@ghd.com

© GHD 2018

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

https://projects.ghd.com/oc/Sydney1/churchpointtoscotlan/Delivery/Documents/21-27425-25278.docx Document Status

Revision	Author	Reviewer		Approved for Issue				
		Name	Signature	Name	Signature	Date		
0	T. Nham	J. Hallchurch	11 00	S. Mortimer		26/10/2018		
			Mallehinh		for Alaston			
			V.					

www.ghd.com

